

DEBRE BIRHAN UNIVERSITY
COLLEGE OF COMPUTING

DEPARTMENT OF INFORMATION SYSTEMS

POST GRADUATE PROGRAM

DETECTING CODE SMELLS USING MACHINE LEARNING TECHNIQUES

BY

YORDANOS FISSEHAYE

A Thesis Submitted to Graduate Program in Partial Fulfillment of the

Requirements for the Degree of Master of Science in Information Systems

JUNE, 2022

DEBRE BIRHAN

ETHIOPIA

DEBRE BIRHAN UNIVERSITY

COLLEGE OF COMPUTING

DEPARTMENT OF INFORMATION SYSTEMS

As members of the Board of examiners of the final Master’s degree open defense, we certify that

we have read and evaluated the thesis prepared by Yordanos Fissehaye under the title “Detecting

Code Smells Using Machine Learning Techniques” and examined the candidate. This is therefore,

to certify that the thesis has been accepted in partial fulfillment of the requirement for the degree

of Masters of Science in Information Systems.

Name and Signature of Members of the Examining Board

Name Title Signature Date

 ______________________ Chairperson _________ _________

Solomon Demissie (Ph.D.) Advisor _________ _________

______________________ Examiner _________ _________

 ______________________ Examiner _________ _________

DECLARATION

This thesis has not previously been accepted in substance for any degree and is not being

concurrently submitted in candidature for any degree in any university. This thesis is the result of

my own investigations, except where otherwise stated. Other sources are acknowledged by

citations giving explicit references. A list of references is appended.

 Yordanos Fissehaye

 June, 2022

This thesis has been submitted for examination with my approval as university advisor.

 Solomon Demissie (Ph.D.)

 June, 2022

DEDICATION

This thesis work is dedicated to my families and friends.

ACKNOWLEDGMENT

First and foremost, I would like to thank the almighty God and his Mother Saint Marry for giving

me the strength and ability to undertake this study. Without His permission, none of this would

have been possible.

I would like to express my gratitude to my advisor, Solomon Demissie (Ph.D.), for his

unconditional support and direction throughout the writing of my thesis. His inspiring advice,

insightful comments, and patience were extremely essential and valuable in my thesis work.

Besides, I really appreciate his concern and want to thank him for always being there whenever I

needed his support.

I would really like to thank all the respondents who showed their willingness to take part in the

study and provide their knowledge in the quality assessment test of the selection stage of the

Systematic Literature Review part.

I would also like to thank my friends who helped me by providing the documents whose access is

restricted.

An acknowledgement of this kind would be incomplete without the deepest gratitude to my

families and my friends who are always the source of my strength. I want to thank them for their

support and unconditional love. Thank you all.

Yordanos Fissehaye

Table of Contents
List of Tables ... i

List of Figures ... iii

List of Acronyms ... iv

ABSTRACT ..vii

CHAPTER ONE ... 1

INTRODUCTION .. 1

1.1 Background .. 1

1.2 Motivation of the Study.. 3

1.3 Statement of the Problem ... 4

1.4 Objective of the Study .. 6

1.4.1 General Objective .. 6

1.4.2 Specific Objectives .. 6

1.5 Significance of the Study ... 6

1.6 Scope and Limitations of the Study... 7

1.7 Organization of the Thesis ... 8

CHAPTER TWO .. 10

LITERATURE REVIEW.. 10

2.1 Introduction ... 10

2.1.1 Code Smells ... 10

2.1.2 Machine Learning Techniques .. 19

2.1.3 Evaluation Metrics ... 23

2.1.4 Systematic Literature Review ... 24

2.1.5 Replication Study... 27

2.2 Related Work .. 27

2.3 Contribution of the papers.. 35

CHAPTER THREE.. 38

METHODOLOGY ... 38

3.1 Research Design ... 38

3.1.1 Secondary research .. 38

3.1.2 Design science Research ... 39

3.2 Proposed Architecture .. 45

CHAPTER FOUR .. 47

SYSTEMATIC LITERATURE REVIEW ... 47

4.1 Search Strategy ... 47

4.1.1 Search Term Identification .. 47

4.1.2 Search Term Formation ... 49

4.1.3 Resources Searched ... 49

4.2 Study Selection ... 51

4.2.1 Exclusion Criteria .. 52

4.2.2 Inclusion Criteria ... 53

4.2.3 Quality Assessment ... 53

4.3 Data Extraction ... 57

4.4 Data Synthesis... 62

CHAPTER FIVE .. 77

REPLICATION STUDY ... 77

5.1 Replication Study ... 77

5.2 The smells Dataset .. 77

5.2.1 Code smell Dataset Information ... 77

5.2.2 Software systems selected for dataset preparation .. 80

5.3 Limitations of the reference work ... 83

5.4 The process of Multi-Class Dataset Preparation .. 84

5.5 Design Metrics Definition and Computation Details ... 86

5.6 Experimental setup ... 86

5.6.1 Data preprocessing... 86

5.7 Experiments and Experimental Results... 93

5.7.1 Experiment 1 Application of J48 Technique ... 94

5.7.2 Experiment 2 Application of Random Forest Technique.. 95

5.7.3 Experiment 3 Application of JRip Technique ... 96

5.7.4 Experiment 4 Application of Naïve Bayes Technique .. 98

5.7.5 Experiment 5 Applying Random Forest with different seed size 99

5.8 Experimental Result Comparison .. 101

CHAPTER SIX ... 103

FINDINGS OF THE STUDY ... 103

6.1 Findings of the Systematic Literature Review .. 103

6.2 Findings of the Experimental work ... 105

6.2.1 Results of the reference Work... 105

6.2.2 Results of the original Work ... 106

6.2.3 Comparison of Results of the Reference and Original Work 107

6.3 Threats to conclusion validity .. 108

6.4 Contribution of the original work .. 109

CHAPTER SEVEN .. 111

CONCLUSION AND RECOMMENDATION .. 111

7.1 Conclusion .. 111

7.2 Recommendation .. 112

7.2.1 Recommendation for Practical use of ML techniques in smells detection 112

7.2.2 Recommendation for Future Work ... 112

APPENDIX I Total number of papers retrieved from ACM digital library 114

APPENDIX II Total number of papers retrieved from IEEE digital library 114

APPENDIX III Total number of papers retrieved from Springer digital library...................... 115

APPENDIX IV Questioner form to accomplish the Quality assessment task. 115

APPENDIX V Design Metrics Definition and their Computation Details 117

APPENDIX VI Additional Metrics used in the dataset ... 124

APPENDIX VII SMOTE stages .. 127

References .. 128

i

List of Tables

Table 2. 1 Code smell with their description .. 14

Table 2. 2 Performance summery of the Deep learning approach by [39] 29

Table 2. 3 Summary of the Machine learning-based detection approaches by different researchers

.. 34

Table 4. 1 Online digital Libraries accessed ... 50

Table 4. 2 List of papers that pass the inclusion criteria .. 55

Table 4. 3 Overall number of filtered documents throughout the selection process 56

Table 4. 4 Quality approved papers and their representation .. 58

Table 4. 5 Summary of all selected studies with their detailed information 59

Table 4. 6 Code smell types and the studies considering them ... 63

Table 4. 7 Machine learning techniques and the studies considering them 65

Table 4. 8 Evaluation metrics and studies considering them ... 68

Table 4. 10 Best performed machine learning techniques and their performance in each studies

considering Long method smell. .. 70

Table 4. 11 Best performed machine learning techniques and their performance in each studies

considering Feature Envy smell. .. 72

Table 4. 12 Best performed machine learning techniques and their performance in each studies

considering Data Class smell. .. 73

Table 4. 13 Best performed machine learning techniques and their performance in each studies

considering God Class smell. ... 74

Table 4. 14 Type of dataset used ... 75

Table 4. 15 The nature of dataset being used (open source (publicly available) or other projects

datasets (Industrial)... 76

Table 4. 16 Nature of dataset as cross project or within project dataset. .. 76

Table 5. 1 Software metrics and their category .. 78

Table 5. 2 Summary of the 74 open-source software systems from Qualitas corpus 81

Table 5. 3 Smell distribution of the two original method level datasets ... 82

Table 5. 4 Attribute ranking using Information Gain ... 89

Table 5. 5 The detailed Accuracy by class of J48 algorithm ... 94

Table 5. 6 Confusion Matrix for J48 algorithm .. 95

Table 5. 7 The detailed Accuracy by class of Random Forest algorithm 96

Table 5. 8 Confusion Matrix for Random Forest algorithm .. 96

Table 5. 9 The detailed Accuracy by class of JRip algorithm ... 97

Table 5. 10 Confusion Matrix for JRip algorithm .. 97

Table 5. 11 The detailed Accuracy by class of Naïve Bayes algorithm .. 98

Table 5. 12 Confusion Matrix for Naïve Bayes algorithm... 98

Table 5. 13 Random Forest performance with different seed size .. 99

Table 5. 14 The detailed Accuracy by class of Random Forest with seed size 100 100

Table 5. 15 Confusion Matrix for Random Forest with seed size 100 .. 101

Table 5. 16 Summary of average performance of all the algorithms .. 101

ii

Table 6. 1 Result of the Reference work ... 106

Table 6. 2 Results of the Original work .. 106

Table 6. 3 Accuracy comparison of common metrics used in both studies 107

iii

List of Figures

Figure 2. 1 Code smell categories [56].. 18

Figure 2. 2 Machine learning taxonomy [48] ... 20

Figure 2. 3 Clustering technique .. 22

Figure 2. 4 The Systematic Literature Review (SLR) process phases adopted from [58] 25

Figure 3. 1 Design science research methodology framework [86] .. 40

Figure 3. 2 Architecture of the proposed work ... 45

Figure 4. 1 Number of collected studies from 2017 to 2020 ... 51

Figure 4. 2 Systematic Literature Review (SLR) execution process... 56

Figure 4. 3 Number of filtered documents throughout the selection process 57

Figure 4. 4 Number of studies in each year after selection process .. 59

Figure 4. 5 Number of papers by each code smell ... 64

Figure 4. 6 Number of papers by each machine learning technique ... 67

Figure 5. 1 Multi Class Dataset preparation ... 85

Figure 5. 2 Class proportion of the original dataset ... 92

Figure 5. 3 Original Class distribution Vs Class distribution after SMOTE 93

Figure 5. 4 Summary of performance of J48 .. 94

Figure 5. 5 Summary of performance of Random Forest .. 95

Figure 5. 6 Summary of performance of JRip .. 97

Figure 5. 7 Summary of performance of Naïve Bayes ... 98

Figure 5. 8 Summary of performance of Random Forest with seed size 100 100

iv

List of Acronyms

ACM Association for Computing Machinery

AMWNAMM Average Methods Weight of Not Accessor or Mutator Methods

ATFD Access to Foreign Data

ATLD Access to Local Data

AUC Area Under Curve

BBNs Bayesian Belief Networks

CBO Coupling Between Objects classes

CC Changing Classes

CDISP Coupling Dispersion

CFNAMM Called Foreign Not Accessor or Mutator Methods

CINT Coupling Intensity

CLNAMM Called Local Not Accessor or Mutator Methods

CM Changing Methods

CNN Convolutional Neural Network

CYCLO Cyclomatic Complexity

DIT Depth of Inheritance Tree

DT Decision Tree

FANIN Number of modules that call a given module

FANOUT Numbers of modules that called by a given module.

FDP Foreign Data Providers

FE Feature Envy

FN False Negative

FP False Positive

GBT Gradient Boosting

IEEE Institute of Electrical and Electronics Engineers

KNN K-Nearest Neighbor

LAA Locality of Attribute Accesses

LCOM5 Lack of Cohesion in Methods

LM Long Method

v

LOC Lines of Codes

LOCNAMM Lines of Codes without Accessor or Mutator Methods

LR Linear Regression

MaMCL Maximum Message Chain Length

MAXNESTING Maximum Nesting Level

MCD Multi Class Dataset

MeMCL Mean Message Chain Length

ML Machine Learning

MLD Multi Label Dataset

MLP Multi-Layer Perceptron

MNB Multinomial Naïve Bayes

NB Naïve Bayes

NBG Naive Bayes Gaussian

NIM Number of inherited methods

NMCS Number of Message Chain Statements

NMO Number of Methods Overridden

NOA Number of Attributes

NOAM Number of Accessor Methods

NOAV Number of Accessed Variables

NOC Number of Children

NOCS Number of Classes

NOI Number of Interfaces

NOII Number of Implemented Interfaces

NOLV Number of Local Variable

NOM Number of Methods

NOMNAMM Number of Not Accessor or Mutator Methods

NOP Number of Parameters

NOPA Number of Public Attributes

NOPK Number of Packages

PRC Precision-Recall Curve

RBFs Radial Basis Function Networks

vi

RF Random Forest

RFC Response for a Class

ROC Receiver Operating Characteristic

SLR Systematic Literature Review

SMO Sequential Minimal Optimization

SMOTE Synthetic Minority Over-sampling Technique

SVMs Support Vector Machines

TCC Tight Class Cohesion

TN True Negative

TP True Positive

WMC Weighted Methods Count

WMCNAMM Weighted Methods Count of Not Accessor or Mutator Methods

WOC Weight of Class

vii

ABSTRACT

Code smell is a poor design choice by developers that could compromise software systems' general

maintainability, clarity, and complexity. It reflects poor design or implementation decisions in the

source code, which makes it more change and fault-prone. Researchers developed a number of

code smell detectors that use various sources of data to assist developers in discovering design

faults. Despite their high accuracy, earlier research has identified three major drawbacks that could

prevent code smell detectors from being used in practice: (i) Developers' subjective perceptions of

code smells discovered by such tools, (ii) little agreement across different detectors, and (iii)

difficulty in determining appropriate detection thresholds. Machine learning techniques are

becoming increasingly popular as a means of overcoming these constraints.

Hence, this study has performed a Systematic Literature Review with the aim of exploring the

code smells detected, Machine learning Techniques deployed and datasets used. The Systematic

Literature Review was performed on three online databases. Accordingly, Long method, Feature

envy, God class and Data class are the most widely studied code smells. While Random Forest,

Decision tree, Naïve Bayes and SVM are the most widely used machine learning techniques.

Additionally, Qualities corpus, Xerces and other project datasets that are not explicitly mentioned

are the most commonly used datasets in the studies from 2017-2020. This research has also

performed an experiment (Replication study) using four different machine-learning algorithms

(J48, Random Forest, JRIP and Naïve Bayes). These algorithms were applied on two code smells

(Long method and Feature envy) that are selected via conducting a Systematic Literature Review.

395 code smell samples were used. The four machine learning algorithms are chosen based on

their strong performance in multi-class dataset as determined by mapping study. The results

demonstrate that all the adopted algorithms have performed above 90 % accuracy with the

exception that Random Forest algorithm shows the highest performance with respect to most

performance metrics given the dataset while the worst performance was achieved by Naïve Bayes.

However, the dataset's lower prevalence of code smell instances and nature of projects resulted in

different results that will need to be addressed in future studies. The research concluded that the

application of machine learning to the detection of these code smells can provide high accuracy.

Keyword: Code Smells, Machine Learning, Systematic Literature Review (SLR), Replication

study

1

CHAPTER ONE

INTRODUCTION

1.1 Background

Software systems must be regularly altered by developers during software maintenance and

evolution in order to add new needs, expand existing functionality, or solve critical issues [1].

However, developers may not always have the time or willingness to keep the complexity of the

system under control and find good design solutions before applying their modifications [2] due

to time constraints or community-related factors [3]. As a result, development operations are

frequently carried out in an undisciplined manner, which has the effect of eroding the system's

original design by introducing so-called technical debt [4] [5]. One of the most dangerous forms

of technical debt [6] [7] is code smells [8], which are indications of the presence of bad design or

implementation choices in the source code.

Code smells are indicators of probable code or design flaws in a system [9] [10]. They are also

known as design faults, and they refer to design problems that have a detrimental impact on the

software's maintainability [11]; As a result, they may have an impact on maintenance procedures

[12]. Code smells are generated by programming and design errors made by software developers

while the software is being designed and programmed [10]. They can also occur as a result of

improper analysis, incorrect integration of new models into the system, disregarding software

development principles, and sophisticated code composition [9] [10]. These smells could have a

negative impact on the system's overall quality, such as its maintainability and understandability.

[13] [14].

Bloaters, Object-Orientation Abusers, Change Preventers, Dispensable, and Couplers are the five

most common bad smells among the several types [8] [15]. Bloaters are code or classes that have

been enlarged to the point that they are difficult to deal with. These smells don't appear right away;

instead, they build up over time as the program progresses, especially if no one tries to get rid of

them. All of the smells in the Object-Orientation Abusers category, on the other hand, involve the

erroneous or inadequate implementation of object-oriented programming principles. The smells in

the Change Preventers category appear when you need to change something in one place in your

code, but you also need to change a lot of other places. As a result, the software development

process is more complicated and costly. The smells in the dispensable category occur when a

2

section of the code is no longer needed and can be eliminated, making the code cleaner, more

efficient, and easier to understand. Finally, all of the Couplers smells lead to excessive class

coupling or show what happens when coupling is substituted with excessive delegation.

Identifying and fixing faults as they occur is a typical technique to avoid deterioration, and one of

the key theories for doing so in object-oriented design is the detection of code-smells [16]. Code

smell detection can be defined as the task of identifying potential code or design problems in a

system [7]. Many scholars have proposed various techniques to cope with the occurrence of code

smells in systems as a result of this.

Detecting bad smells in code or design and then doing the required refactoring methods as needed

is a great way to improve the code's quality. This is because these smells make the system more

difficult to maintain and, as a result, render it more prone to failure [17]. Consequently, bad smells

are unlikely to cause failure directly, but they may do so indirectly, lowering software quality [18].

The technique of detecting bad smells can be done manually or utilizing automatic detection

strategies. It is deemed subjective to perform the code smell detection method manually. This

means that each code smell looks at a specific type of system piece (classes, methods, etc.) that

may be assessed based on its characteristics [19]. Some of the disadvantages are, it is prone to

errors and time-consuming [20], the programmers' personal interpretation is equally open to them

[8], and there is no agreement among developers on how to define them [21] [22]. Automated

approaches based on source code have been developed to eliminate this subjectivity [11] [23] [24]

[25].

However, a significant portion of those approaches is dependent on code metrics [25] [26] [27]

[28] [29]. These strategies use measures and thresholds that aren't always constant, resulting in an

increase in false positives that don't represent true problems [22] because it does not take into

account information about the system's context, domain, scale, or design [30]. As a result, given

the subjective definition of code smells, it is necessary for the approach to be aware of and sensitive

to the specific environment. Automated tools are proposed as a result [31] [32] and adoption of

Machine Learning (ML) techniques is one of these approaches for detecting code smells [22]

which are the most recently popular tools, which have shown to improve the overall performance

of numerous prediction models and are highly promising [33] [34].

3

To construct a model, a machine learning classifier must first be trained using a set of code smell

instances. The models are then utilized to find or detect code smells in previously unknown or new

occurrences. The resulting model's power is determined by a number of factors, including the

dataset, machine learning classifiers, and the classifier's parameters.

So, this study has applied machine learning techniques for the detection of two selected code smell

types. Accordingly, a set of experiments are conducted on the target dataset.

1.2 Motivation of the Study

Codes instances are the building blocks of a complete software system. Hence, the overall quality

of software systems depends on the quality of each of those code fragments. But, due to different

factors like lack of time or willingness stated earlier, developers tend to evolve a software system

that do not comply with the basic principles of software development. The result of such poor

design then introduces the existence of one of the so-called technical debts which is code smells.

Even if the existence of code smells does not necessarily imply system failure, one way or another,

the aggregation of such things may bring a long-term effect in the software product. They might

have an everlasting influence on the maintainability and extendibility of the software system. So,

it is highly required to perform appropriate refactoring and to do so code smells should be detected

earlier [8].

Different researchers have proposed a set of techniques to detect code smells ranging from the

manual method to the use of tool based techniques. All of those techniques have their own

limitations and areas of improvement in terms of detection like, consensus among developers,

selection of threshold and the nature of dataset employed. This study focuses on the adoption of

Machine learning techniques, because according to many researchers, it is a very recent trend and

hot research area in the detection of code smell and need to be improved in terms of applying these

techniques for code smell detection. This study is carried out with the motivation of addressing the

potential gaps that are still not taken in to consideration by the previous works. Hence, tried to

explore the connection between code smells and machine learning techniques.

4

1.3 Statement of the Problem

One of the most common problems in modern software engineering is the quality of program

source code. With the introduction of agile approaches, there has been a rise in interest in ensuring

and evaluating the quality of source code, which is the most important artifact in software

development. The necessity to develop, adopt, and validate appropriate models and methodologies

in that field has also become critical. Accordingly, there has been a continuous work done on these

methodologies. In addition, there is recent shift away from human-based assessment toward

automated methods [11].

Code smells [8], which are indicators of poor design or implementation choices in the source code,

are one of the most dangerous forms of technical debt that degrade the quality of software products

[6] [7]. Indeed, past study has demonstrated that they not only significantly diminish coders' ability

to read source code [35], it also makes the affected classes more susceptible to change and faults

[36] [37]. As a result, they pose a significant danger to maintainability effort and costs [14] [38].

Code smells can be detected by different techniques ranging from manual methods to automated

source code analysis [29]. Manual code smell detection by developers is an error-prone, expensive,

and time-consuming job that is dependent on the developer's level of experience and perception

[27]. There are also indications that the removal of code smells is not being accomplished to a

desirable degree, mainly to the fact that most developers are unaware of their presence [39].

Another challenge with identifying code smells is that it is subjective to the developer's

perspective; what one developer deems a code smell may not be one for other developer [21] [22].

Attempts were made to develop meaningful metrics that can give suggestions on the existence of

design faults in order to lessen the subjectivity component in code smell identification [21].

Another method for eliminating subjectivity is to utilize automatic tools to discover defective code,

which translate source code into an intermediate representation and then do static analysis based

on rules, metrics, and thresholds to find code smells [39] [25]. This method, on the other hand,

ignores information about the system's context, domain, size, and design [30]. What appears to be

a smell may actually be the finest approach to develop or design a (part of a) program. This lack

of context resulted in false positives, with more than half of the automatically discovered code not

being related to architectural issues [30].

5

On the contrary, heuristics-based approaches for detecting code smells have also been proposed in

prior studies [22] [18]. They use a two-step approach in which they compute a set of measures and

then apply thresholds to those metrics to distinguish between smelly and non-smelly classes. Those

heuristic approaches differ in (i) the algorithms used to detect code smells (e.g., a combination of

metrics or the usage of more complex methodology like Relational Topic Modeling) and (ii) the

metrics employed (e.g., based on code metrics or historical data). Although it has been

demonstrated that such detectors have reasonable performance in terms of accuracy, earlier

research has revealed a number of significant limitations that may restrict their implementation in

practice [39] [40]. Code smells detected by heuristic-based detectors, in particular, can be

subjectively perceived by developers [41] [42]. At the same time, there is little consensus between

them [11]. More crucially, the majority of them need that criterion be specified to separate smelly

code components from non-smelly ones [39] and naturally, the choice of thresholds has a

significant impact on their accuracy.

However, academic and industrial organizations are becoming interested in Machine Learning

(ML) techniques for detecting code smells [43]. The fundamental benefit of these techniques is

that they can uncover patterns that are difficult to specify using pre-determined or statistical

criteria, as well as patterns that people cannot see [44]. While the research community looked into

the approaches used by scholars and practitioners in the field of heuristics-based code smell

detectors, [45] [46] [47], only a sprinkle of information exists on the methodologies used to create

code smell prediction models using Machine Learning Techniques. As a result, this study has

explored such strategies for code smell detection.

Accordingly, constructing the research questions is a significant step in the process of this study.

So, the following four research questions are defined to achieve the research objective:

1. Which code smells are most commonly detected using machine learning techniques?

2. Which machine learning techniques are efficient to detect code smells?

3. What datasets have been used for code smell detection?

4. What result achieved after developing and evaluating the performance of the proposed

machine learning model that would be used for detection of code smells?

6

1.4 Objective of the Study

1.4.1 General Objective

The general objective of this study is to assess the application of machine learning in the detection

of code smells and design and develop a machine learning model that can able to detect code

smells.

1.4.2 Specific Objectives

To accomplish the general objectives stated above, the study undergoes the following specific

objectives:

 Conduct a literature review to systematically assess and analyze different researches on

code smell prediction models and machine learning techniques that has been utilized to

detect code smells.

 Select a dataset that influence the performance of the proposed machine learning model.

 Extract a dataset that influence the performance of the proposed machine learning model.

 Explore an appropriate machine learning technique to detect code smells.

 Identify an appropriate machine learning technique to detect code smells.

 Conduct an experimental work with the aim of experimenting and making comparison

between selected machine learning techniques to find the most-efficient one for developing

the final proposed model.

 Identify the performance metrics used to evaluate the proposed machine learning predictive

model in terms of the detection of code smells.

 Evaluate the performance of the final developed model for its efficiency in code smell

detection.

1.5 Significance of the Study

Both software development organizations/teams, and their clients can save money by improving

software maintainability and quality [38]. Quality can also be a competitive advantage, affecting

the company's long-term viability. Hence, there is an ongoing effort made to increase software

quality by detecting code defects earlier. There are a set of smell detection techniques proposed by

different scholars. Even if many studies have been undergone on this area, the ML branch is still

in development and has much of potential for improvement when compared to static techniques.

There is also a scarcity of empirical data to help the creation of new research on machine learning

7

approaches for detecting code smells [22]. Solidifying empirical support can aid in recognizing

the weaknesses of machine learning approaches and taking efforts to improve their performance,

while also offering data to the research community about their benefits and gaps. Even though

various researchers have presented a set of machine learning techniques, little attention has been

paid to the adoption of other components of the approach. As a result, this study was able to analyze

how this method might influence the detection process by offering a multi class approach instead

of a binary class approach (a dataset representing the instances as smelly or not) that have been

used in almost all the reviewed studies. The final result might then be utilized as a starting point

for other researchers looking to follow a different method. It can be used as a starting point, and

other methodologies can be used to improve the results obtained in this study. Because machine

learning can give new and more effective ways of discovering code-smells than heuristics and

metrics-based approaches, it is an area that has recently gotten a lot of interest [22]. It can also aid

software firms in reducing rework and improving quality and reliability, as well as software

engineers in increasing productivity.

1.6 Scope and Limitations of the Study

This study mainly focuses on two different but complimentary tasks. The first task is undergoing

the systematic literature review. The systematic literature review in this study was performed in

the documents from online digital libraries such as, IEEE explore, Springer and ACM.

Additionally, the SLR is bounded to the year interval 2017 to 2020, hence only papers published

in the specified time interval are assessed.

The second task which is the experimental work, was performed using supervised machine

learning techniques. After applying all the appropriate preprocessing task, feature reduction has

been applied and this is to filter the most important yet representative attributes/features. Feature

reduction plays a vital role in enhancing the performance of the learning algorithm [48]. Then

finally, a set of classification algorithms were applied. The classification techniques in this study

were selected from different categories to investigate which category is best for predicting the

specific code smell types. Accordingly, single classifiers from each category namely, tree-based

classifiers, Bayesian classifiers and rule-based classifiers were applied. Finally, their performance

was evaluated using the performance measurement metrics accuracy, precision and recall and F-

measure.

8

This study focuses on finding and evaluation of the best performing machine learning model for

the detection of code smells. As a result, the task of identification and prediction for new instances

is out of the scope of the study. Accordingly, detection was made based on the portion of instances

of a dataset and the performance of the classifiers was evaluated on the other portion. The class

identification and prediction task for new unseen instances (which are out of the data used for

training the algorithms), is not considered. Additionally, this study did not consider the detection

of other types of code smells (other than the specified one) that might be found in the instances of

the same dataset.

1.7 Organization of the Thesis

This study is organized in to seven chapters. The first chapter gave an initial overview on the

overall work done by introduce the basic and core concepts, setting the major motive for this study

and objectives for performing this study.

The Second chapter deals with the introduction of basic terms of this study which are, code smells

and refactoring, machine learning techniques for code smell detection and Systematic Literature

Review. Additionally, related works were revised to understand what has been done in this area

and filtered out the potential gap in the area of detection of code smells using machine learning

techniques.

The Third chapter is about methodology adopted by the study. This chapter deals with the

presentation of the general research design and the proposed architecture. Hence, tries to give an

overview of the methodology followed in this study.

The Fourth chapter is the first methodology adopted by the study which is, Systematic Literature

Review. This chapter deals with study searching, selection and a systematic review of the selected

studies. Hence, tries to find an answer to the first three research questions of this study.

The Fifth chapter is another methodological part, which is the experimental work (replication of a

study). Hence, depending on the major ideas of the reference work, a set of experiments are

conducted and compared using different performance measurement metrics.

The Sixth chapter deals with the presentation of basic findings of the SLR as well as the

experimental work. Additionally, a comparison between the original study and the replicated one

9

is made. As a result, an attempt will be done to answer all the research questions specified at the

beginning of the study.

The final chapter, chapter seven is a conclusion part. Accordingly, in this chapter a conclusion was

made based on the results found from the prior chapters and a bench mark was suggested for future

studies to contribute to the knowledge.

10

CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

Maintenance is one of the most expensive aspects of software development [49]. According to the

data published in [50] and [51], maintenance operations account for more than 75% of overall

software costs. Maintainers of software spend over 60% of their time trying to understand the code

[52]. Even with carefully built systems, source code quality tends to deteriorate as the project

progresses, because a system's original design is rarely prepared for every new requirement, and

changes must be made fast by several personnel without adequately adapting the system's structure

[53]. Software inspection is a well-known technique for increasing code quality that includes a

thorough analysis of the system's design, code, and documentation to look for probable issues

based on previous experience [54]. However, software systems may continue to have various

weaknesses that could cause a problem. Code smells are a result of bad design, and maintaining

software with code smells is a time-consuming operation [55].

2.1.1 Code Smells

Code smells are code snippets with design problems, their presence in the code complicates the

software maintenance and degrades the quality of software [49]. According to Azeem [56], Code

smells are warning signs of possible software problems, and they have a detrimental impact on

program quality. They are unambiguous indicators that the system's design is deteriorating, and

that this long-term deterioration may lead to software rot. During the software design and

programming stage, code smells are caused by programming and design errors made by software

developers [10]. They can also happen for a variety of causes, including faulty analysis and

integration of new models into the system, disregarding software development rules, and

developing complex scripts [9] [10]. Each code smell looks at a specific type of system element

(classes, methods, etc.) that can be evaluated based on its characteristics [19]. The code smells

provide guidelines for identifying unwanted behaviors and typical coding errors, although they are

still subject to programmers' interpretation [8].

Different methods can be used to identify code smells. Various coding smells detectors have been

proposed by Marinescu, R. [45], Moha, N. etal [29] and Munro, M.J. [46]. According to

Kessentini, W. etal [18], methods for detecting code smells are divided into seven categories (i.e.,

11

cooperative-based approaches, visualization-based approaches, machine learning-based

approaches, probabilistic approaches, metric-based approaches, symptoms-based approaches, and

manual approaches). According to Fontana, F.A. [11], because the same symptom can be caused

by several diseases, or even by no disease at all, human judgment is required when evaluating

smells in the context of the project where they are discovered, analogous to clinical diagnosis.

However, due to the enormous number of code bases, manual code smell identification is an

extremely time-consuming operation. Furthermore, the main difficulty of manual code smell

detection according to the research in [22] [21] [47] is that the concept of what constitutes and

does not constitute a code smell in a given situation may not be agreed upon by all developers

working on the same project.

The deployment of heuristic based code smell detection technologies has been introduced to

address this issue. Heuristic-based techniques, on the other hand, use a two-step procedure, with

the first phase consisting of defining a set of measurements and the second step consisting of

applying a threshold to those metrics to distinguish between smelly and non-smelly classes [56].

As a result, using a heuristic-based approach to detect code smells is regarded subjective, and the

threshold used has an impact on its accuracy.

Hence, Automated approaches (tool-based) based on the source code have been offered in various

publications in order to eliminate the subjectivity of interpretation [11] [23]. Recent research is

focused on developing automatic detection tools to assist humans in locating smells when code

size gets too huge for manual review, and these techniques could be useful in easing the process

of locating code smells in large code bases [11]. A variety of commercial and open-source code

smell detection techniques are available. Some are research prototypes that detect specific code

smells, while others detect a broad spectrum of code smells [52] [57]. However, a significant

portion of those approaches is dependent on code metrics [26] [45] [29]. Machine learning

algorithms are one of these automatic smell detection methodologies. To address the restrictions

mentioned previously, machine learning techniques are increasingly being used to detect code

smells [22].

Machine learning approaches differ from heuristic-based approaches in that they use classifiers to

distinguish between instances' smelliness rather than predefined thresholds based on calculated

metrics. Even if machine learning approaches are now being used to address code smell issues and

12

the findings are promising [58], when compared to static techniques, the ML branch is still under

development and has plenty of room for improvement [49]. The number of studies examining the

use of machine learning techniques is growing, but each one employs different models and

techniques to accomplish this goal [25]. Machine learning approaches are now being used to solve

code smell issues, and the results are encouraging. To construct a model, a machine learning

classifier must first be drilled using a set of code smell instances. The models are then used to

discover or detect code smells in novel or unusual situations. The produced model's power is

determined by a number of factors connected to the dataset, including the machine learning

classifiers, the parameters of the classifier itself, etc. [58] According to the researchers in [56], the

model can be trained using data from the project under examination (within project strategy) or

data from other software projects (cross project strategy).

Furthermore, there is a scarcity of empirical data to assist the creation of new research on machine

learning approaches for detecting code smells [41]. Further development of empirical support can

aid in understanding the shortcomings of machine learning approaches and taking steps to improve

their performance by providing information on their benefits and gaps [49].

When a code smell is detected, it is suggested to do refactoring. Refactoring is a technique for

changing the internal structure of a program without changing its behavior. Refactoring increases

the code quality but has no effect on the system's behavior [59] [8]. High quality, high performance,

cheap cost, reusability, implementation, and easy software development are all benefits of

refactoring [9] [60].

2.1.1.1 Code Smell and Types

As defined earlier, Code smells are inherent features of software that might suggest a code or

design fault that makes it difficult to evolve and maintain software, as well as trigger refactoring.

They are closely linked to the technique of redesigning software to improve its internal quality

[11]. A bad smell indicates a problem in the code that has to be addressed through refactoring [61].

So, they're not bugs; they only make it tough for software developers to understand the project's

source code. Meanwhile, these code smells may make it difficult for software developers and

maintainers to restructure and upgrade project source code [62]. Code smells aren't patterns to

avoid; they're indicators that something has to be looked at further [63]. As a result, refactoring

can be used to address these design flaws or structural issues in software [61].

13

Refactoring is the practice of altering a software system in such a way that it improves its internal

structure while leaving the code's external behavior unchanged [8]. Refactoring's primary goal is

to improve the design of current code [8] [64]. By modifying the structure of the code/design

without changing the general behavior of the system, refactoring enhances several attributes of

code/design such as maintainability (understandability and readability), extensibility, and so on

[57]. Additionally, according to Mantyla, M., etal [64], the enormous complexity of a software

system may obstruct its further development. Refactoring is just a method of ensuring that future

development is possible. The researcher Fowler, M. etal [8] tries to convince people to refactor

with the following arguments: -

 Refactoring makes software easy to understand. This is undoubtedly true, as one of the

purposes of refactoring is to make software more understandable and source code self-

documenting. Of course, there are times when developers argue over which type of code is

the easiest to comprehend. In most circumstances, though, notions about what constitutes

good programming style and good design should be consistent.

 Refactoring helps you find bugs. If we agree that refactoring improves understandability,

this can be accepted by common sense. However, supporting the thesis with empirical

evidence would be beneficial.

 Refactoring helps you program faster. This notion is reinforced by the rules of software

evolution, which state that as software systems become more sophisticated, they become

more difficult to design.

 Refactoring improves the design of software. Because effective software design is nearly

always straightforward to understand, this argument goes hand in hand with Fowler's first

argument.

Smells, using metaphor, are the symptoms of possible diseases, and refactoring procedures

may be used to heal the diseases and eliminate their symptoms [11]. It does not imply that all

code smells must be eliminated; it is dependent on the system. When they must be removed,

however, it is preferable to do it as soon as possible. We must locate and detect smells in the

code if we want to eliminate them; tool support for their identification is especially useful

because many code smells go undiscovered while programmers are working [11].

Additionally, according to the researcher at [57], the majority of code smell detection solutions

14

rely on static analysis and code metrics, and do not take into account aspects such as system

size, language structure, or context. To put it another way, any design-based refactoring

requires the tool to comprehend the code's real semantic purpose.

There are different kinds of code smells. Here are the most common and well-known code

smells identified by Fowler, M. etal [8]. The researcher has introduced 21 kinds of code smells

which have been used by different researchers. They are listed and described shortly as follows:

Table 2. 1 Code smell with their description

No Code smell Description

1 Alternative class with

different interfaces

A situation in which a class can interact with other classes yet

their interfaces are different.

2 Comments Poor code structure is compensated by the usage of comments.

3 Data class A data-only class that doesn't have any logic.

4 Data clumps Data items that are frequently found together.

5 Divergent change When a class must be updated each time another class is updated.

6 Duplicate code Code that duplicates the functionality of another piece of code.

7 Feature envy A method that is more concerned with the qualities of other

classes than with the properties of its own.

8 Inappropriate intimacy When two classes are inextricably linked.

9 Incomplete library class When a program uses a library that isn't complete. Large Class:

a class with a lot of instance variables or methods that tries to

perform a lot of things.

10 Lazy class A class that isn't doing its job properly and should be eliminated.

11 Long method A lengthy procedure that is difficult to comprehend, modify, or

extend.

12 Long parameter list A lengthy and difficult-to-represent parameter.

13 Message chain A series of calls from one object to another that do not provide

any new functionality.

14 Middle man When one class delegated a large portion of its behavior to

another.

15

15 Parallel inheritance

hierarchies

A situation in which there are two parallel class hierarchies that

are linked.

16 Primitive obsession It represents the use of primitives rather than small classes, which

makes it less useful and reusable.

17 Refused bequest A child class completely supports the implementation of its

parent class.

18 Shotgun surgery When a class is changed, all other classes must be changed as

well.

19 Speculative generality When unneeded code is written in anticipation of future software

modifications.

20 Switch statements Instead of polymorphism, type codes or run-time class type

detection are used.

21 Temporary field A variable in the class is only utilized in specified scenarios.

Later in 2003, Mantyla [65] was able to categorize the above code smells identified by Fowler et

al. into 7 categories as presented below:

 The Bloaters: The code or classes in this category have been enlarged to the point where

they are difficult to work with. These smells don't appear right away; rather, they build up

over time as the program progresses, especially if no one tries to get rid of them. The first

type of code smell in this category is the Long Method, which contains an excessive number

of lines of code, makes it difficult to alter, replace, and recognize. Splitting this procedure

into several methods is the best answer for this smell. The second type of code smell is

Large Class. When a single class tries to do too much, it becomes a large class, which

usually includes multiple instances and responsibilities. This smell makes the class more

difficult to reuse and maintain. The simplest way to get rid of this smell is to divide the

class and use class extraction. The third is Primitive Obsession. In some cases, tiny classes

should be used instead of primitive types. For simple tasks, primitives, such as particular

strings for phone numbers, ranges, and currencies, are used instead of little objects. The

fourth type which is Parameter List, occurs if a method has more than four arguments,

making parameter lists more difficult to distinguish and use, as well as inconsistent. The

final type is category is Data Clumps. Various areas of the code, for example, parameters

16

to connect to a database, may have comparable groups of variables. Data clumps should be

split up into separate classes.

 The Object-Orientation Abusers: All of the smells in this category are the result of

improper or insufficient object-oriented programming approaches. Switch Statements are

the first form of bad smell in this group. This smell appears when the code has a series of

if statements or a sophisticated switch operator. Temporary Field is the second form of bad

smell in this group. Temporary fields are typically established for usage in algorithms with

a large number of parameters. As a result, rather than defining a huge number of

parameters, the programmer constructs fields in the class for these data. These fields are

solely used in the algorithm and are otherwise unusable. This type of smell is tough to

detect. The removal of this odor improves the readability and organization of the code.

Refused Bequest is the third type of bad smell in this group. When programmers build

inheritance between two completely different classes, but the subclass only uses a few of

the superclass's methods and properties, the Refused Bequest smell appears. Delegation,

rather than inheritance, is the greatest method to deal with this smell. Alternative classes

with different interfaces is the fourth type of bad smell in this group. This code smell occurs

when programmers build two classes with similar functionality but different names for

their methods.

 The Change Preventers: These smells emerge when you need to update anything in one

part of your code but also need to change a number of other parts. As a result, the software

development process is more complicated and costly. There are three types of bad smells

in this category. Divergent Change is the first type of bad smell in this category. When

multiple changes are done to a single class, this bad smell develops. Splitting the class's

conduct is the greatest technique to get rid of this smell. When various classes have the

same behavior, for example, the classes should be unified by inheritance. This will improve

the code's organization and decrease code duplication. Shotgun Surgery is the second form

of bad smell in this group. When a single change is done to numerous classes at the same

time, this is known as shotgun surgery. Because one task has been divided among a vast

number of classes, this smell occurs. Moving the existing class behaviors into a single class

is the best method to get rid of this smell. This will make the code more organized, decrease

duplication, and make it easier to maintain. The third type of bad smell in this category is

17

Parallel Inheritance Hierarchies. When you build a subclass for a class and then realize

you need to make a subclass for another class, you get this smell [1].

 The Dispensables: These smells appear when a piece of code is no longer needed and

might be deleted, making the code cleaner, more efficient, and easier to understand. This

category includes six different forms of bad smells. Comments are the first sort of bad smell

in this group. This smell appears when the script contains a lot of explanatory comments.

The Duplicate Code is the second form of bad smell in this category. When the same or

extremely identical code appears in multiple places of a program, it causes the program

code to become big. This bad smell can be eliminated by encapsulating the duplicated code

in a new method. The third foul odor in this category is Lazy Class, which is a worthless

class in which every class developed requires effort and time to learn and maintain.

Eliminating these classes is the greatest approach to get rid of the smell. The fourth type of

bad smell in this group is Data Class. A Data Class is a class that merely includes fields

and rarely has any logic. The Data Class contains getters and setters’ methods for fields.

Dead Code is the fifth sort of bad smell in this group. This happens when a piece of code

is never executed. Speculative Generality is the sixth type of bad smell in this category.

This happens when a parameter, field, method, or class isn't used. The reason for this bad

smell is that code is occasionally written to support anticipated future features that are

never deployed. As a result, the code becomes more difficult to comprehend and maintain.

 The Encapsulaters: such as Message Chains and Middle Man, are smells that deal with

data transmission or encapsulation.

 The Couplers: All of the smells in this category either lead to excessive class coupling or

demonstrate what happens when coupling is substituted by excessive delegation. There are

six types of bad smells in this group. Feature Envy is the first type of bad smell in this

category. When a method accesses the data of another object more than its own data, it

emits a bad smell. This usually happens when fields are moved to a Data Class. If this

happens, the data operations should also be relocated to this class. The second type of bad

smell in this group is Inappropriate Intimacy. This happens when one class does its work

by using the internal methods and properties of another class. The third type of bad smell

in this group is Message Chains. Message Chains occurs when a client wishes another

object, that object requests another object, and so on. The fourth type of bad smell in this

18

group is Middle Man. When a class performs only one action and delegated tasks to

another, it is known as Middle Man. This smell could be the result of a hasty removal of

Message Chains. Incomplete Library Class is the fifth kind of code smell in this category.

When libraries are no longer able to meet the needs of their users, this occurs.

 Others: includes others that do not fall into any of the other categories mentioned above.

Figure 2. 1 Code smell categories [56]

The occurrence of code smells has the ability to reduce the extendibility and maintainability of

software products. So, it is better to handle them properly and to do so, they have to be detected

as fast as possible. Having this in mind, there are a number of studies carried out on the detection

of code smells. Those studies propose different kinds of approaches to wards the detection of code

smells. Some of them propose the use of manual approach in code smells detection, others propose

the use of several automatic detection tools. Different approaches have been given more attention

in past decades. But, due to the limitations of those approaches, recent studies have extensively

examined the use of machine learning approaches.

19

2.1.2 Machine Learning Techniques

The earlier the code smells are detected, the less will be the cost of refactoring and the better the

software quality will be. Therefore, the detection step plays a vital role in improving the results of

the other steps and by that on the performance of the software refactoring. Better machine learning

techniques are a good solution to cope with the ambiguity caused by the lack of consensus

(conflicting perceptions of developers conduct to subjective code smell interpretations) [48].

Meaning, to deal with the problem of subjectivity, various machine learning approaches have been

presented that can learn and discriminate the properties of smelly and non-smelly source code parts

(classes or methods) [66].

Machine learning is a field of study in which computers may learn and complete tasks without

being explicitly programmed [67]. It is a branch of computing algorithms that is constantly

developing and aims to replicate human intelligence by learning from the environment. In a sense,

these algorithms are "soft programmed" in that they continuously improve at doing the required

goal by dynamically altering or adapting their architecture. Training is the adaption process where

samples of the input data are given together with the intended results. The algorithm then refines

itself to its best ability so that it can generalize and create the desired outcome for unknown,

previously unexplored data. The "learning" component of machine learning is training. [68]. It can

be classified in to three broad categories supervised, semi- supervised and unsupervised. The

supervised machine learning classifies a given instances in to previously known class label. Hence

the class label of each instance is known from the beginning where as in the unsupervised machine

learning there are no predefined class labels. Class labels are decided after the natural grouping of

similar populations has been made first. The third semi-supervised machine learning technique is

a hybrid approach that incorporates the features of both supervised and unsupervised machine

learning techniques where there is a portion of the dataset containing an already labeled instances

and there is also some portion containing the unlabeled instances/ data.

20

 Figure 2. 2 Machine learning taxonomy [48]

2.1.2.1 Supervised Machine Learning Technique

The task of supervised classification entails employing algorithms to teach a machine the

relationship between cases and class labels. The supervision comes in the form of previously

labeled instances, from which an algorithm constructs a model to predict the labels of new

instances automatically [66]. According to Fernandes, E. etal [39], Supervised Machine Learning

methods identified by Kotsiantis, S.B. et al., at [44] like Decision tree, learning set of rules, single

layered perceptron, Multi layered perceptron (MLP), Radial Basis Function (RBF) network, Naïve

Bayes, Bayesian Network, Instance Based Learning and Support Vector Machine are the most

used method for detecting code smells. But some of the supervised machine learning techniques

according to [58] are listed below.

 Multilayer Perceptron (MLP) [69] [70] is a type of artificial neural network (ANN) that

consists of an input layer, at least one hidden layer, and an output layer. Every node is a

neuron with a nonlinear activation function that has a weighted association with other

nodes in the next layer. MLP uses the back propagation technique for all of its training.

 Support Vector Machines (SVMs) [71] [72] are supervised learning models which will

be used for classification or regression. Based on the notion of structured risk minimization,

the researcher at [71] defined SVM and empirical error minimization and geometric margin

maximization are the goals of SVM.

 Radial Basis Function Networks (RBFs) [73] [74] is a form of neural network that

consists of three layers: an input layer, a hidden layer, and a linear output layer. RBF

networks are utilized for categorization, function approximation, and system control. There

Machine Learning

Supervised

Classification Regression

Semi-supervised

Semi supervised

Unsupervised

Clustering

21

are three varieties of RBF networks: multiquadric, polyharmonic spline, and Gaussian RBF

networks.

 Bayesian Belief Networks (BBNs) is a probabilistic graphical model that can be used to

represent a set of variables and their conditional dependencies. The probabilistic

dependencies among the associated random variables are represented by the edges linking

the nodes in this model [75]

 Naive Bayes (NB) according to the researchers in is a supervised learning algorithm that

uses the Bayes algorithm with the "naive" assumption that each pair of characteristics is

conditionally dependent [74] [76].

 Linear Regression (LR) (LR) is a modeling technique that uses linear predictor functions

to find the correlation between the goal and independent variables in datasets [77] [78].

 Random Forests (RF) is a supervised learning approach that contains a large number of

unpruned classifications or regression trees, each of which is based on the values of a

random vector investigated separately and with the same distribution across the forest. Both

classification and regression issues can be solved with RF [79].

 Multinomial Naive Bayes (MNB) Multinomial naive Bayes is a form of NB that was first

used to classify text [76].

 Decision Tree (DT) is one of the most popular supervised learning methods for regression

and classification The C4.5 algorithm is the most widely used method for producing

decision trees [80].

2.1.2.2 Unsupervised Machine Learning Technique

As discussed above, supervised machine learning techniques can function in an environment where

the class labels are already specified. So, having the dataset that contains unlabeled instances, there

is no guarantee for the supervised techniques to undergo the classification task. In such scenarios

unsupervised learning techniques plays a vital role in assigning those instances in to their proper

groups.

Code smell datasets may contain labeled instances. But, still according to different studies on code

smell detection, the datasets being used by the researchers contain a large portion of unlabeled

data. Meaning, a given dataset represents the occurrence of a single type of code smell and the

class labels will be smelly (containing that specific smell type) and the rest are labeled as non-

22

smelly. But in fact, the second category which has been blindly labeled as non-smelly, might

comprise other smell types. This might potentially influence the prediction performance of a given

machine learning technique because prediction result will be biased towards the larger class (class

covering the majority of instances). As a result, unsupervised procedures are essential for reducing

the bias produced by the unlabeled cases and categorizing the unlabeled instances into appropriate

groupings. As a result, the non-smelly parts of the dataset can be categorized according to their

degree of similarity using the clustering method. Clustering is a machine learning approach that

groups data points together. A clustering technique can be used to classify each data point in a

certain group given a set of data points. There are a variety of clustering strategies to choose from.

According to Luiz, F.C. [49], hierarchical and partitional clustering techniques are the two types

of clustering algorithms. Hierarchical clustering techniques create nested clusters in a cyclical

manner, whereas partitional clustering algorithms find clusters concurrently.

Figure 2. 3 Clustering technique

2.1.2.3 Semi-supervised Machine Learning Technique

The other semi supervised technique can be used when a dataset contains both labeled and

unlabeled instances. Semi-supervised learning can be applied in place of supervised learning, using

unlabeled data for training [81].

Machine learning approach can be applied in different disciplines. It can be applied in health

industry, financial industry, educational industry, retail industry and different others. Its

application on these different disciplines has been getting attention these days. This is because

there is an increasing awareness on the advantage of tying them to their business process. Machine

learning approach has the ability of upgrading performance of a given business in a way that

enables them in a better decision making and better understanding of their domain easily.

Among those different fields, Software engineering is one area. This study focuses on the

application of machine learning approach in the software industry. One among the major

challenges in the software industry is the occurrence of code smells, which indeed have the ability

Clustering

Hierarchical Partitional

23

to hinder a quality of a given software or even degrade the system’s performance. Those code

smells should be detected as early as possible to reduce unnecessary maintenance cost. It is

believed that machine learning approach is best way to enable the early detection of occurrence of

code smells.

2.1.3 Evaluation Metrics

The performance of machine learning techniques can be evaluated using different metrics. Some

of them are true positive rate, false positive rate, precision, recall, f-measure and accuracy. The

detail information on how those metrics evaluate the performance is presented as follows.

 Correctly classified instances: - Is the total number of instances that are labeled correctly

under their true class.

 Incorrectly classified instances: - Is the total number of instances that are labeled

incorrectly into other classes by the classifier.

 Time taken to build the model: - Is the amount of time a given algorithm takes to train

it-self and able to make a prediction accordingly.

 Confusion Matrix:- shows the true positives, false positives, true negatives and false

negatives.

 True Class

Positive Negative

P
r
e
d

ic
te

d
 C

la
ss

Positive

TP FP

Negative

FN TN

 TP Rate: - Is the percentage of instances that are actual positives that are labeled correctly

as actual positives. TP Rate is also referred as recall or sensitivity. It incorporates all the

True positives and False Negatives. It is calculated by

24

TP

TP + FN

 FP Rate: - Is the rate of instances that are in fact negative but mistakenly classified to be

positive by the classifier. These instances are not actual positives. It incorporates all the

True Negatives and False positives. The FP Rate is calculated by

FP

FP + TN

 Precision: - Is the ratio of true positives to the total number of the true positives and false

positives. It is calculated by

TP

TP + FP

 Recall: - the value is similar to True Positive Rate.

 F-Measure: - is a performance measurement technique that incorporates the properties of

both precision and Recall. F-Measure is calculated by

2 ∗ (Precision ∗ Recall)

(Precision + Recall)

 Accuracy: - Is the percentage of correctly classified instances (True positives and True

Negatives) to the overall predictions made. It is calculated by

(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)

2.1.4 Systematic Literature Review

A Systematic Literature Review (SLR) is a defined as a process for locating, evaluating, and

interpreting published literature in order to examine a certain research issue or phenomenon [82].

Since the main aim of the SLR is to find out the relevant and available published literatures and

studies that enables to answer the research questions, a series of steps need to be performed towards

achievement of study goal. So, a clear and traceable search strategy should be followed. The search

25

strategy consists of a series of steps such as search term formation, resource identification,

selection process and quality assessment. Finally, the information from the selected papers will be

synthesized in order to extract the answers to the mentioned research questions.

Figure 2. 4 The Systematic Literature Review (SLR) process phases adopted from [58]

As the above figure depicts, the basic steps in any Systematic Literature Review are defining the

research question, designing a search strategy, performing study selection, setting quality

assessment, data extraction and data synthesis. The steps are described as follows: -

 Research Question

Defining the research question is the first stage in any systematic literature review. The research

questions that the study aims to answer should be clearly specified. Accordingly, the next stage of

the SLR would be held based on the research questions formed. All the important keywords will

be constructed in a way that they can enable to answer the research questions of the study.

 Search Strategy

26

The second stage in Systematic Literature Review is search strategy. This search strategy contains

a series of three steps. These steps are search term identification, search term formation and

resources to be searched. In the search term identification stage, a set of words that are synonyms

with every core point of the research question will be explored. Then, the appropriate search terms

will be merged together in order to form a complete search term in the second stage search term

formation. Once the search term is formed, the third step is finding the place to apply the search

term in order to retrieve the necessary documents. Hence, the selection of digital libraries to dig

from will be performed. Then, the search term will be applied in the selected digital libraries and

accordingly, all documents related to the search term will be retrieved.

 Study Selection

The third stage which is the study selection stage focuses on the filtration of the most important

documents from the less important ones. Accordingly, the documents that are going to have a high

relevance towards answering the research questions specified will be selected. In order to do so, a

set of exclusion and inclusion criteria will be applied to filter the retrieved documents. Finally, all

the documents that can satisfy the criteria will pass to the next stage, quality assessment.

 Quality Assessment

This is the fourth stage where a quality of the selected documents will be evaluated by peer

academicians or domain experts. The documents will be evaluated for their true representativeness

of the specific issues raised as a research question. Accordingly, the information from the papers

that pass this stage will be utilized.

 Data Extraction

This is the fifth stage in systematic literature review. Hence, the information with respect to the

research questions will be extracted and utilized from the selected papers. The information

extracted then will be used for synthesis in the final stage.

 Data Synthesis

This is the final stage in any systematic literature review where the answer for the previously

specified research questions will be provided. The implication of the information from the previous

step will be reported in this stage.

27

2.1.5 Replication Study

The process of repeating a research study, usually with different contexts and individuals, to

evaluate if the original study's fundamental conclusions can be applied to different things or

situations is known as replication [66]. Replication study aims at repeating a study’s data and

methodology in order to prove or disprove whether a result of a given study can have the same

effect in another environment. A researcher can use the same dataset to repeat a study and see if

other methodologies can affect the dataset in the same way. Similarly, a researcher can use the

same methodology used by the reference work and apply it on other dataset to check if the given

methodology can influence the new dataset similarly. Replication study enables a methodological

or subject dependency comparison between of a reference work and one’s original work.

The task of replication study requires the selection of a reference work with which one’s own work

can be compared. Therefore, the researcher is required to select a reference work in to which a

modification can be made.

2.2 Related Work

Kaur, A. et al., at [83] proposed J48 technique to detect the occurrence of pattern-smell pairs that

co-exist and those that don’t contain any smell in them claiming that design patterns and code

smells are too related in a way that the presence of design pattern contributes for the absence of

code smells and vice versa. For this study, they first selected open-source systems (eclipse version

3.6 and 3.7) then they selected tools for extracting smells and patterns from the selected source

code and finally prepared datasets containing classes extracted by smell detection tools and classes

extracted by pattern detection tools. Then j48 is selected as learning algorithm. The study have

used an integrated platform in such a way that i-plasma is used for code smell detection and web

of patterns is used for design pattern detection. The study runs 10 different experiments on the

selected datasets and two parameters were used to measure the performance of the proposed

models and those are PRC (Precision-Recall curve) and ROC (Receiver Operating characteristic

Curve). Finally, the main focus of this study is finding the basic relationships among design

patterns and code or bad smells and they have tried to detect multiple disharmonies in the code.

The code smells detected in the dataset are Brain class, Data class, God class, Request pattern

bequest and schizophrenic class. On the other side, the patterns considered are Adapter, Bridge,

28

Template and singleton. Hence after running a set of experiments on the selected patterns versus

code smells, they were able to conclude the following major findings.

 Singleton design pattern shows no presence of bad smells.

 The code smell “request pattern bequest” shows no presence in the presence of design

patterns.

 With respect to the least smell presence, God class exhibits the least presence in the

presence of Adapter, template and Bridge pattern.

The study of Kaur, A. et al., at [83] focuses on the detection of design pattern and code smells

existence patterns. Whereas, this study focuses on the application of ML techniques for the

detection of existence of code smells.

Hadj-Kacem, M., et al. at [48] tried to detect code smells using Deep learning claiming that deep

learning can give better performance compared to other machine learning approaches. In this

study, the researchers have used a combined approach containing a supervised and un-supervised

techniques for the detection of the four selected method level and class level smells. This study

uses four datasets that were adopted from Fontana, F.A., et al, at [22]. The four datasets represent

the first two class level code smells (God class and Data class) and the other two method level

code smells (Feature envy and Long method). The unsupervised learning that is used for

dimensionality reduction is Auto-encoder which is an unsupervised neural network that is trained

with feed forward and back propagation algorithms [84]. The supervised learning used for

classification was Artificial Neural Network (ANN) which consist of input, hidden and output

layers, in which the neurons are connected, and for each connection, weights are set. Because it's

a binary classification, the output neuron will determine whether or not it's a code smell based on

its kind [48]. So, the major contribution of this paper is concluded as two-fold where the first is

they proposed a combined detection approach using two deep learning techniques; Auto-encoder

and Artificial neural network. The second is comparison of the combined approach and the basic

classifier showing that there is a significant performance improvement when the number of

features is reduced using the Auto encoder and that dimensionality reduction plays an important

role in achieving better result in the study. Finally, the performance was evaluated using Precision,

Recall and F-measure. The final result for the four smell types is presented as follows:

29

Table 2. 2 Performance summery of the Deep learning approach by [39]

Code smell Precision Recall F-measure

God class 99.28% 98.58% 98.93%

Data class 98.92% 98.22% 98.57%

Feature Envy 96.78% 96.09% 96.44%

Long method 96.78% 97.83% 97.30%

Unlike this study, the work of Hadj-Kacem, M., et al. at [48] don’t consider the detection of

existence of multiple smells in a single dataset. Each of the datasets used by the researcher are

independent and experiments were done on these independent datasets (for each smell type).

Luiz, F.C. et al., at [49] tries to identify code smells with machine learning techniques. The aim of

this study was development of a mapping study of machine learning techniques on the selected

code smells and an experiment was conducted on a standardized dataset (Landfill) that reflects a

real project scenario. The researcher performs a systematic literature review (SLR) and undergo

the process from a clear search strategy up to selection of relevant papers using a set of inclusion

criteria, exclusion criteria and snowball technique as well. Then after a result of the SLR has been

found, a state of art based on the selected machine learning techniques has been applied to the

targeted dataset. Some of the techniques used by this study are Association rule mining, SVM,

Text based, Genetic algorithm, Clustering, Decision Tree, Random Forest, Semi-supervised,

Nearest Neighbor, Linear Discriminant Analysis and Naive Bayes. The smells covered by this

study are BLOB, Divergent change, Duplicated code, Feature envy, God class, Large class, Long

method, Long parameter list, Message chain, Middle man, Shotgun surgery and Speculative

generality. The performance of each technique was measured by Precision, Recall and F-measure.

Finally, the results indicate that in terms of f-measure the best average performance was provided

30

by Decision Tree, followed by Random Forest, Semi-supervised and Nearest Neighbor techniques.

When analyzing the techniques by precision, Linear Discriminant Analysis followed by

Association Rules, Semi-supervised and Decision Tree present the highest performance.

According to the result of recall, Naive Bayes classifier performing worst in general. Also,

Random Forest for Middle Man, Decision Tree for Message Chain and Text-Based technique for

Long Method shows a bad performance. In general, the technique used for Long Method

performed closer to the original experiments, but 34% worse than it, while the rest were 50%

outperformed by the original works and some even performed below 86% compared to the original

work.

Even if Luiz, F.C. et al., at [49] have performed a very detail SLR and a number of experiments,

they have used 12 different datasets representing 12 smell types. They didn’t consider the existence

of more than one smell type in a single smell instance. Whereas in this work, two independent

datasets have been merged to explore the existence of two code smells in a single dataset.

Additionally, they have directly applied the ML techniques on a highly imbalanced dataset which

is an issue in most smell datasets. The SLR is also performed in a very recent works compared to

the SLR in reviewed work.

Guggulothu, T. et al., at [66] in 2019, tried to detect code smell using multi label classification

approach, their claim was that the existing machine learning techniques can only detect a single

type of smell in the code element and this doesn’t correspond to a real-world scenario; therefore,

they proposed multi label classification methods to detect whether the given code element is

affected with multiple smells or not. They have considered two method level datasets containing

long method and feature envy which were initially adopted from Fontana, F.A. et al., [22]. Those

datasets first contain single label methods and the researchers merged those separate datasets so

that the final dataset contains a multi label method level smells. They build the dataset MLD (Multi

Label Dataset) in a way that common instances are added to MLD with their corresponding two

class labels and the remaining instances of each single class label dataset are joined into MLD.

Then after performing the necessary transformation on the dataset, they have applied five tree-

based classifiers namely, B-Random Forest, Random Forest, B-J48 Unpruned, B-J48 Pruned, J48

Unpruned and the best performance according to F-measure, ROC area and Accuracy is gained by

Random Forest with the results 96.0%, 97.7% and 95.9% respectively.

31

The research conducted in the study of Guggulothu, T. et al., at [66] is relatively similar with this

work than the rest. It has considered existence of two smells. They have adopted a multi label

dataset. The multi class dataset was transformed using three problem transformation techniques

namely, binary relevance, classifier chaining and label chaining. Their study indicates that the

classifier chaining and label chaining results better detection than the binary one. The researchers

in the study have undergone the experiments on an imbalanced dataset containing a set of less

relevant attributes. They have applied tree based algorithms (Random Forest and J48). In this work,

a multi class dataset was used in order to represent a real label correlation. Additionally, this study

has tried to apply four different ML algorithms.

In the work of Azeem, M.I. et al., at [56], systematic literature review and meta-analysis was

performed based on machine learning techniques for code smell detection. The researchers claim

that even if heuristic-based code smell detectors have been carefully studied by different research

communities, there is still a noticeable lack of knowledge on the use of machine learning to detect

code smells using machine learning techniques and whether there are point of improvements to

allow better detection. So, the major objective of the study was to explore the use of machine

learning approaches to detect code smells and hence performed a systematic literature review.

They have considered papers published from 2000-2017 and using the SLR process they were able

to identify 15 papers in which each of them actually adopted machine learning techniques. In this

study they have tried to find answers for code smells considered, machine learning techniques

adopted, evaluation strategies and a meta-analysis on the performance achieved by the models

proposed so far. The final result of the analysis shows that God Class, Long Method, Functional

Decomposition, and Spaghetti Code are the smells that have been extensively studied in the

selected papers. The most commonly used machine learning algorithms for code smell detection

were Decision Trees and Support Vector Machine. Additionally, in terms of performance, JRip

and Random Forest were the most effective techniques for code smell detection. The study also

performed a meta-analysis from which the researchers have also tried to infer the following

conclusions that proper selection of metrics (independent variables) has an influence on the

performance of prediction models by almost 29%. Additionally, the study has clearly indicated

that in most of the studies, prediction models were experimented in both with–in and cross project

setting but 33.33% of them were conducted on cross project scenario and they have noticed that

cross models are 19% less effective than with–in project models. The other thing is, the researchers

32

have mentioned that few studies were performed on large scale which they think they find it hard

to generalize the reported findings and only one primary study investigated the performance of

machine learning techniques on a manually built dataset which reports the existence of a

comprehensive set of code smells.

The work of Azeem, M.I. et al., at [56] is based on the application of systematic literature review

and the SLR was performed on the years 2000 to 2017. But this study focuses on a very recent

papers which the researchers have not covered. An experimental work on the detection of code

smells is also out of scope in the reviewed work.

Al-Shaaby, A. et al., [58] tried to perform a systematic literature review to systematically review

the studies carried out to detect code smells using machine learning techniques from the year 2005

to 2018. In order to carry out the SLR, the researchers have followed a general guideline defined

by Kitchenham, B. et al., at [85]. They have conducted their search in five online databases to

extract the relevant studies. They have conducted a set of exclusion, inclusion criteria and quality

assessment to obtain the primary studies. Then finally come up with 17 primary studies that focus

merely on the application of machine learning techniques to detect the presence of code smells.

The researchers undergo this study believing that the final result will provide knowledge about

code smells detected, machine learning techniques being used, datasets used, accuracy measures

and most commonly used tools. Finally, after analyzing those 17 primary studies, the researchers

have concluded that SVM, J48, Naïve Bayes, Random Forest, SMO and JRip were the most widely

used techniques in 2013, 2016 and 2018 while in 2017 Artificial Neural Networks were the only

techniques that have received attention. They have also mentioned that according to their findings,

it is only the supervised machine learning technique that has been applied to the area of code smell

detection. With respect to the smells detected, they have noticed the occurrence of around 28 types

of smells in the selected papers. 12 of the papers out of 17 detected more than one smell type while

the rest five have detected one smell type. They have also tried to analyze the datasets that were

used for code smell detection, dataset name, size, type (if they have used commercial, student or

open source), availability, and language. Accordingly, fourteen studies used open-source systems,

while the rest three studies have used industrial systems. Only two studies have used systems

written in C and C# the other studies have used systems written in java. Most studies used software

metrics as the independent variables except one study that have used textual metrics called string

33

tokenization. With respect to the tools, WEKA and Tensor Flow implemented in Python were the

most commonly used tools to implement the machine learning algorithms.

Al-Shaaby, A. et al., [58] is based on the application of systematic literature review. This study

doesn’t apply any experimental work on the detection of code smell.

Di Nucci, D. et al., at [86] has tried to assess the application of machine learning algorithms in

detection of code smells in their study. The main aim of their study was to investigate if there is

still enough room for improvement in the topic of code smell detection using machine learning

algorithms. The baseline for their study was the work done by Fontana, F.A. et al., at [22] that has

applied around 32 different ML algorithms to detect four code smell types. Fontana et al. have

conducted a large-scale study and consider two class level smells and two method level smells

which are Data Class, Large Class, Feature Envy and Long Method and they have reported that

most of the classifiers used by the study exceeds the performance 95% with respect to both

accuracy and F-measure. The main reason for going through Fontana’s work according to the

researchers was that they found a number of possible limitations in the study that might threaten

the generalizability of the final results and conclusion. According to the researchers, even if

Fontana et al. have tried to propose the use of machine learning techniques, which mainly solve

the high rate of human and tool subjectivity by providing the learning algorithms, the ability to

differentiate between smelly and non-smelly instances in code elements, the performance of

machine learning algorithms is still highly dependent on multiple grounds. Those grounds as to

the researchers can be the nature of the dataset that is constructed, the improper generalization of

other possible class labels in to one class label which can cause bias, the ratio between the class

labels (there might even be a non-realistic balance between the class labels) and a strongly different

distribution of the metrics between the two groups of instances. Hence, they have tried to critically

investigate the work of Fontana, F.A. et al., at [22]. They have proposed a carry out study on the

use of machine learning algorithms for code smell identification, with the goal of addressing the

issue of metric distribution of smelly and non-smelly elements across diverse datasets. The dataset

used incorporates code elements influenced by various forms of code smells, with a less evenly

distributed distribution of smelly and non-smelly instances and a smoother boundary between the

metrics distributions of the two groups of instances, resulting in a more realistic scenario [86].

Finally, their finding shows that the high performance reported by the researchers at [22] was not

34

due to the mere fact that capabilities of the machine-learning techniques used for code smell

detection is high. Rather, what contributes to this higher result according to their perspective was

the specific dataset employed by the researchers. While testing code smell prediction models on

the revised dataset, the performance is up to 90% less accurate in terms of F-Measure than those

reported by the researchers at [22].

The work of Di Nucci, D. et al., at [86] apples 32 ML algorithms on four independent datasets. It

doesn’t consider the introduction of existence of more than one smell type in a single smell

instance.

Table 2. 3 Summary of the Machine learning-based detection approaches by different researchers

No (Author,

Publishing year)

Methodology adopted No of

systems or

Datasets

Type of Machine learning Machine learning

techniques used Supervised Unsupervised Combined

1 Kaur, A. et

al.,2018 [83]

 J48 2 datasets

(Eclipse

version 3.6

and 3.7)

2 Hadj-Kacem,

M.et al.,2018

[48]

 Auto encoder and

ANN

4 datasets

3 Luiz, F.C. et

al.,2018 [49]

 Association rule

mining, SVM, Text

based, Genetic

algorithm,

Clustering,

Decision Tree,

Random Forest,

Semi-supervised,

Nearest Neighbor,

Linear

Discriminant

1 dataset

(Landfill)

35

Analysis and Naive

Bayes.

4 Guggulothu, T. et

al.,2020 [66]

 Random forest, B-

Random forest ,B-

J48 Unpruned, B-

J48 Pruned and J48

Unpruned

2 datasets

(Multi-label

dataset

containing

two method

level smells)

5 Azeem, M.I. et

al.,2019 [56]

Performed SLR and meta- analysis studies from 2005-2017 that focus on

code smell detection using ML techniques.

6 Al-Shaaby, A. et

al.,2020 [58]

Performed SLR on code smell detection using ML techniques studies from

2005-2018.

7 Di Nucci, D. et

al.,2018 [86]

Replication on the reference work done by the researchers at [22] using 2

datasets.

2.3 Contribution of the papers

The contribution made by all the researcher’s work mentioned above is remarkable. They have

tried their best to improve gaps in the area of detection of code smells using machine learning

techniques. Some of them have performed a thorough systematic literature review giving insight

about the increasing demand of study on this topic. The researchers at [58] [56] [49] have

performed their SLR on the papers from (2005-2018), (2005-2017) and (2002-2016) respectively.

They all have presented their clear steps on how they have performed the SLR. The initial and

basic step in any SLR process is the formation of keyword that enables a search in online databases.

However, the way the researchers at [56] have constructed their keyword is relatively convincing.

Because these researchers have followed a very clear SLR guideline proposed by another

researcher. So, the set of steps which they have followed in order to construct their keyword is

quiet representative than the other two researchers. With respect to the SLR, findings of the studies

represent the result of papers from 2002 to 2018. Hence, further study is required to perform SLR

on recent papers.

36

Additionally, the other researchers at [49] [86] [66] [48] [83] have tried to perform an experimental

work on the application of machine learning techniques in the detection of code smell. Hence, they

have adopted different machine learning techniques. Di Nucci, D. et al., [86] have replicated a

reference work and applied 32 different algorithms from WEKA. The researchers were forced to

replicate a study because they were uncomfortable with the results of the reference work and tried

to see on what is behind this higher result. Then they were able to point out that it is the dataset

that contributes to this high result. This significantly implicates that the dataset and its quality play

a vital role in the performance of a given learning algorithm. Guggulothu, T et al., [66] , on the

other hand introduced a new concept which is multi-label classification approach to detect whether

a given code is affected by more than one smell. Hence unlike the other researchers, their dataset

(which is prepared manually) contains different smells under a single instance and the rest were

labeled as non-smelly. But these researches have used tree-based classifiers only and other

classifiers might perform better. Luiz, F.C. et al. at [49], apart from the SLR, they have tried to

replicate a reference work and applied a wide range of machine learning techniques on a wide

range of smells. He has applied both supervised and unsupervised techniques. He has used a large-

scale dataset to undergo his experimental work. The other researcher Hadj-Kacem, M. et al., [48]

contributes to the body of knowledge by introducing the use of hybrid technique in the detection

of smells. They have also showed that feature reduction plays a vital role in the performance of

classification algorithm which the others do not. Finally, Kaur, A. et al., [83] used only one

learning technique and the scope of their study was a bit different from this study. It focuses on

the relationship between code smell and design patterns.

All the papers that have been reviewed are found to be very critical and have made a remarkable

contribution to this study. Having the strength and weakness of each papers described above, this

study will try to fill the gaps in the following forms: -

 As for the SLR, this study was performed on very recently published papers from 2017 to

2020 (which is not covered by the others) and will follow a clear step to perform the SLR.

 Regarding the experimental work this study has applied feature reduction in order to filter

out the most important metrics to the detection of the specified code smells.

 Additionally, data balancing has been applied on the dataset in order to mitigate the

unrealistic proportion of instances, which almost all smell datasets suffer from.

37

 Classification was made with different supervised techniques from different categories.

 This study has also considered the existence of more than a one code smell in a single

instance of method. Hence, introduces a multi class dataset containing the existence of two

method level code smells which has not been previously covered by other studies.

38

CHAPTER THREE

METHODOLOGY

This chapter presents the general research methodology followed in the study. Hence, the two

broad research methodologies followed will be discussed. Additionally, the general architecture

of the proposed work is also presented in this section.

3.1 Research Design

In order to achieve the objective of the study, this research has followed a secondary research

approach for the first methodology (SLR) and a design science research methodology for the

second methodology (Replication Study) which is the experimental work.

3.1.1 Secondary research

 Secondary research is a type of research in which a summary, collation and synthesis of prior

research is performed. Primary research is concerned with the generation of data, whereas

secondary research is concerned with the analysis of data obtained from primary research sources.

It uses a primary source to synthesize the information from them. Secondary research involves

research material published in research reports and other relevant materials. These resources can

be found in public libraries, educational institutions, websites, and data from previously completed

surveys. In order to conduct secondary research, the following steps have to be performed.

3.1.1.1 Identify the topic of research

Identifying the area that needs to be researched is required before beginning secondary research.

After that, a list of the research's characteristics and objective should be developed. Hence, in the

SLR part of this study, first an initial understanding on the area of code smell detection using ML

techniques is built. Then a set of research questions are set according to the nature of the research

problem. Three research questions were formulated so that they can be answered at the end when

the information from the primary sources is analyzed. Accordingly, the SLR tried to explore the

code smells detected, the ML techniques adopted and the datasets used for code smell detection.

39

3.1.1.2 Identify research sources

Once the topic is chosen and the research questions were set, the next stage is to search for sources

from which a researcher can dig out information. This stage is to narrow down the sources of

information that will supply the most relevant facts and information for the research. Accordingly,

in the SLR part of this study, three online data bases namely IEEE, Springer and ACM are

explored. All the relevant primary research papers that are published in the year 2017-2020 are

used.

3.1.1.3 Collect existing data

Once the data collection sources have been narrowed down, there is a need to check for any

historical information that is closely linked to the subject. Data for research can be found in a

variety of places, including educational institutions, public libraries, government and non-

government organizations, and so on. In the SLR part of this work, documents from the mentioned

sourced are collected.

3.1.1.4 Combine or compare

This stage focuses on the gathering of important information from the retrieved documents. This

helps to analyze and synthesize the information from these documents and finally provide an

answer to the research questions. In this stage, according to the intention of the research work, the

information gathered can be either combined or compared in order to assemble data into a usable

format be analyzed.

3.1.1.5 Analyze data

 Finally, after combining or comparing the data or information, they should be analyzed in such a

way that they can give meaning and enable to answer the research questions specified initially at

the start of the research work.

3.1.2 Design science Research

Design science Research or Constructive Research, is a scientific method for creating items that

benefit people [87]. According to the researcher at [88], design science research can be defined as

a study that creates a new functional artifact to address a specific type of problem and examines

its usefulness in solving specific type of problem. It focuses on the development and evaluation of

artifacts that can improve the performance of existing artifact. These artifacts can be algorithms,

interfaces, methodologies (such as models) and languages. This type of research gives explicit

40

standards for evaluation and iteration with in projects. The major reason behind adopting a Design

science Research methodology is that, this research methodology is proven to be a suitable

methodology in computer related fields.

As a result, since the overall aim of this study is to develop an artifact (model) that can be able to

properly detect the presence of code smells, this broad research strategy is required and suggested.

According to the researcher at [87], Design science consists of a set of processes for its

accomplishment. The processes include problem awareness, suggestion, development, evaluation

and conclusion. The general framework of design science research is depicted in the figure below.

Figure 3. 1 Design science research methodology framework [87]

3.1.2.1 Problem Awareness

Problem Awareness is the first task in the design science research methodology adaptation process.

This stage responds to the query, "What is the issue?". As a result, it's vital to define the study

problem and show how a solution might be applied. An understanding of a problem in a specific

domain is almost a half way to its solution. So, prior to further activity, a given research/study

should be able to pin point the potential gaps in the specific domain. Accordingly, starting from

the problem definition, the proper solution for the specific problem will be built. Hence, there are

41

a number of ways used in order to identify the problem of a given area. This study has explored

different published documents like journals and conference papers. As a result, it was able to

recognize that code smell detection using ML techniques is a hot research area now a days with a

number of gaps that need to be addressed by future studies. Even if a continuous effort has been

done to address some issues, it has still an open area of improvement. Accordingly, this study was

able to find out that the use of imbalanced dataset, the nature of the dataset used and selection of

relevant metrics are some of the key factors influencing the performance of a given model.

3.1.2.2 Suggestion

In this stage of design science research, an answer to the question “How should the problem be

solved?” will be provided. Hence, an alternative idea on how to solve a given problem will be

provided. Additionally, the objectives (general as well as specific) of the research work and the

specific methodology to be adopted will be set.

Accordingly, this study has proposed the use of a replication study with the aim of repeating the

study of the reference work. Hence, an experimental work was proposed with a slight modification

on the reference work.

3.1.2 .3 Development

Development stage is concerned with the creating an artifact that can solve the problem. These

artifacts include models, methods or an instantiation in which a research contribution is embedded.

In this stage, the research has tried to design a machine learning model. Hence, it describes the

dataset used, dataset formation, data preprocessing and selection of algorithm in the research as

follows.

Dataset Preparation

The datasets used in this study are adopted from the reference work [66]. Two code smell datasets

containing the existence of Long Method and Feature Envy have been used. Then, a multi class

dataset has been formed. In order to form the multi class dataset the common instances from those

two datasets were used.

The original datasets (the independent Long Method and Feature Envy) contain 82 software

metrics and a total of 420 instances in each of them. From the total 840 instances, the common

instances that constitute the multi class dataset are 395. All the metrics contain a numeric value.

42

This study has applied two most important preprocessing tasks that are suitable to the nature of the

dataset. The dataset contains an imbalanced proportion of instances and a considerably too many

attributes. The preprocessing tasks applied are attribute selection and data balancing technique.

Hence, document analysis and information gain ratio are used to filter some attributes. In order to

balance the dataset, SMOTE (Synthetic Minority Oversampling Technique) has been used.

After the appropriate preprocessing tasks has been made, the dataset has been feed to the ML

algorithm to train themselves with.

Choosing a Machine Learning Algorithm

The selection of machine learning algorithms that is suitable for the dataset adopted is a critical

issue in classification and detection process. As a result, after examining the specified tasks in

relation to the nature of the research problem in this study, the researcher selected four

classification algorithms that are believed to be appropriate. The selected machine learning

algorithms are from different categories. The researcher selects those four classification algorithms

because they are easy to understand, most frequently applied and appropriate to the specific dataset

used. The general working of the algorithms used in this study are discussed as follows:

J48 is a decision tree generation technique developed by C4. 5, which is an extension of ID3. It is

built on a recursive divide and conquer approach, which is a top-down technique. At the root node,

it chooses which attribute to split on, then generates a branch for each conceivable attribute value,

splitting the instances into subsets, one for each branch that extends from the base node. J48

algorithm works according to the principle listed below.

Step 1: From each training data attribute, calculate the gain ratio, split information, and entropy.

Step 2: Create a root node with the highest gain ratio from the attribute choices.

Step 3: By deleting the previously selected qualities, calculate gain ratio, split information, and

entropy for each attribute.

Step 4: Create an internal node with the highest gain ratio from the attribute choices.

Step 5: Step Pruning trees should be done.

Step 6: Verify that all of the tree's attributes have been created.

43

 If you replied no, return to stages 4 and 5.

 If you responded yes, proceed to the next stage.

Step 7: Remove any unneeded limbs from the tree.

Step 8: Create rules based on node ordering, starting with the root node, and write them in the

form of an IF-THEN rule.

Random forests also known as random decision forests. It is used for classification, regression

and other problems by training a large number of decision trees. It's an ensemble method that's

superior to a single decision tree because it averages the results to reduce over-fitting. The working

of Random Forest algorithm can be described with the following steps.

Step 1: Begin by randomly choosing samples from a dataset.

Step 2: Following that, this algorithm will create a decision tree for each sample. The forecast

result from each decision tree will then be obtained.

Step 3: Voting will take place in this phase for each expected outcome.

Step 4: Finally, as the final prediction result, choose the prediction result with the most votes.

JRip is a rule-based classifier that used an IF-THEN rule for classifying instances. JRip

implements a learner for propositional rules. It uses Incremental Pruning to Reduce Errors on a

Repeated Basis (RIPPER). This algorithm goes through four stages Growing a rule, Pruning,

Optimization and Selection.

Step 1: The first stage is the Growth stage. In this stage, J48 algorithm generates the rule

automatically by eagerly adding characteristics to it until it fulfills the terminating requirements.

Step 2: The second stage is pruning stage. Until a pruning metric is attained, each rule is

incrementally trimmed, allowing the pruning of any eventual sequence of the characteristics.

Step 3: The third stage is pruning stage. Each of the created rules is further optimized in this stage.

 Adding characteristics to the original rule indiscriminately.

 Grow a new rule on its own, going through a growth and pruning process.

44

Step 4: The fourth stage is the selection stage. Hence, the best rules are preserved in this stage,

while other rules that are no longer relevant are deleted from the model.

Naive Bayes are a type of "probabilistic classifier" based on Bayes' theorem and strong

independence requirements between features. It is a machine learning classifier that is basic, yet

effective and widely used. It is a probabilistic classifier that uses the Maximum A Posteriori

decision rule to create classifications in a Bayesian context. It's suitable for both binary and multi-

class classifications. It performs well in multi-class predictions as compared to the other

algorithms [74]. The Naïve Bayes algorithms works according to the following steps.

Step 1: Calculate the prior probability for each of the class labels given.

Step 2: For each class, calculate the likelihood probability for each attribute.

Step 3: Calculate the posterior probability using the Bayes Formula.

Step 4: Given that the input belongs to the higher probability class, determine which class has the

greater probability.

It is calculated by the formula below. Where p(c/x) means the posterior probability of a class

(target) given a predictor (attribute), P(c) denotes the prior probability of a class, P(x/c) denotes

the probability of a predictor given a class, and P(x) denotes the prior probability of a predictor.

𝑝(𝑐/𝑥)=
𝑝(𝑥/𝑐)𝑝(𝑐)

𝑝(𝑥)

Then, those ML algorithms have been applied on the target dataset and as a result a model have

been built. These models contain information with respect to different metrics.

3.1.2.4 Evaluation

This stage gives an answer to the question “How well does the artifact work?”. Accordingly, the

performance of the created artifact will be assessed. In order to evaluate the performance of a given

model, there are a number of performance measurement mechanisms.

In machine learning approach, the performance of a model can be measured using different

metrics. The metrics used in this study are Confusion matrix, Precision, recall, f-measure and

accuracy. Therefore, the performance of the four ML techniques selected has been tested against

the mentioned performance measurement techniques.

45

3.1.2.5 Conclusion

This is the final stage where the basic findings of the study will be presented and concluded. Hence,

the results of the experimental work and the performance of the developed artifact will be

generalized. An answer will also be provided by integrating the core ideas of the research work

which is, communicating the problem, the specific solution applied and the effectiveness of the

solution towards addressing the relevant issues raised.

3.2 Proposed Architecture

An architecture is a blueprint describing how the overall proposed work operates. Hence, this

section of the study presents the detail of the overall experimental process followed in order to

produce the final result. The figure below illustrates the architecture of the proposed work.

Figure 3. 2 Architecture of the proposed work

46

As tried to depict in the above figure, two separate datasets “Feature Envy Dataset” and “Long

Method Dataset” have been used to construct the Multi Class Dataset (MCD). The common

instances from each dataset and their corresponding class label constructed the MCD. Then, after

the merged dataset is prepared, the second stage which is preprocessing, has been made.

Accordingly, two most important preprocessing tasks that are proper to the specific dataset adopted

have been performed. These preprocessing tasks are attribute selection and data balancing. This

dataset contains around 82 attributes, 395 common instances and an imbalanced proportion of class

labels. Using attribute selection process, 46 attributes were selected from the total 82 attributes.

Additionally, one of the balancing techniques, SMOTE have been applied to balance the

proportion of instances in the dataset.

Then having the preprocessed dataset, four machine learning algorithms (J48, Random Forest,

JRip and Naïve Bayes) from different categories (Rule based, Tree based, and Probabilistic

classifiers) were selected and applied. All of these ML algorithms are applied on 10-fold cross

validation where the dataset is portioned in to ten equal partitions (folds) and training is made on

each partition iteratively until all the partitions are used as training and testing data. Then, after all

machine learning techniques are trained, the result of each algorithm is evaluated using different

evaluation metric. Finally, the results of all the ML algorithms will be compared in terms of the

specified metrics. Those metrics are accuracy, TP rate, FP rate, precision, recall and f-measure.

47

CHAPTER FOUR

SYSTEMATIC LITERATURE REVIEW

This chapter presents the methodology followed in the systematic literature review (SLR)

performed by the study. It contains every single step followed to conduct the (SLR) and finally

presents the basic findings after the synthesis of the information gained.

4.1 Search Strategy

The search strategy in this study consists of search term identification, identification of resources

to be searched, search process and identification of criteria for selection of papers. Primarily, a

search string that enables to extract all the required materials from digital libraries should be

prepared using a set of different terms that could be directly related to the study. Then, the next

step is to go for the places to dig in to, which are online sources of materials named digital libraries.

Having the digital libraries and the search string, a number of documents will be retrieved. But the

main work is to discriminate the relevant paper from the huge set of documents. To do so, a set of

exclusion, inclusion and quality assessment criteria is required, then after, a certain number of

papers that have direct importance to the study will be selected. Finally, after all related studies

have been selected, the papers that pass after the mentioned steps will be utilized for final analysis

to answer the set of research questions to be addressed.

4.1.1 Search Term Identification

In this study, a search string from Azeem et al. [56] has been adopted. Since the research question

and nature of their study is quite similar with this study and additionally, they have followed a

very clear search strategy to prepare the search term, it’s preferred to directly adopt their keyword.

The researchers in order to select the search string, they have followed a five-step clear guideline

which is proposed by the researchers at [85]. Those steps were presented as follows.

1. Used the research questions for the derivation of major terms, by identifying population,

intervention, and outcome.

2. For all the major terms, found the alternative spellings and/or synonyms.

3. Verified the keywords in any relevant paper.

48

4. Used Boolean operators for conjunction in case a certain database allows it, i.e., we used

the OR operator for the concatenation of alternative spellings and synonyms whereas the

AND operator for the concatenation of major terms.

5. Integrated the search string into a summarized form if required.

The researchers finally summarized the results of each steps mentioned above so that they will be

able to design better search terms (string) for their study. The steps' outcomes are as follows: -

 For the first step i.e. identification of population, intervention, and outcome, the

researchers have implicated Code smell detectors as population, machine learning

techniques as Intervention and Code smells as outcomes.

 The alternative spellings and synonyms for the aforementioned relevant phrases are

identified in the second stage: -

 For the term Code Smells, the synonyms listed are “code smells” OR “code smell”

OR “code bad smells” OR “bad code smells” OR “bad smells” OR “anomalies”

OR “antipatterns” OR “antipattern” OR “design defect” OR “design-smells” OR

“design flaw”.

 For the term Machine Learning, the alternative words listed are “machine learning”

OR “supervised learning” OR “classification” OR “regression” OR “unsupervised

learning”.

 For the term Prediction, the alternative words listed are “prediction” OR

“detection” OR “identification” OR “prediction model” OR “model”.

 For the term Software, the synonyms identified are “software” OR “software

engineering”.

 For the third step, they stated that they have checked all possible keywords in the papers

they thought are relevant and they did not find any other alternative words or synonyms to

add into the set of relevant terms.

 For the fourth step, they have used a Boolean operator to connect the above representative

search terms and bring up the overall search term used for navigation of relevant

documents. Hence, they were able to come up with the search term “((“code smells” OR

“code smell” OR “code bad smells” OR “bad code smells” OR “bad smells” OR anomalies

OR anti-patterns OR antipattern OR “design defect” OR “design-smells” OR “design

49

flaw”) AND (“machine learning” OR “supervised learning” OR classification OR

regression OR “unsupervised learning”) AND (software OR “software engineering”))”

 Finally, for the fifth step, they have indicated that some digital libraries like IEEE Xplore

digital library have search term limitation. So, they come up with a more concise yet still

representative search term which is “((“code smells” OR “code bad smells” OR “bad

smells” OR antipatterns OR “design defect” OR “design-smells” OR “design flaw”) AND

(“machine learning” OR “supervised learning” OR “unsupervised learning”) AND

(detection OR identification OR “prediction model”) AND (software OR “software

engineering”))”.

4.1.2 Search Term Formation

As tried to be discussed in the above steps, the final search string which is proposed by [56], is

directly adopted for this study as a final search string.

“((“code smell” OR “code bad smell” OR “bad smell” OR anti-patterns OR “design defect” OR

“design smells” OR “design flaw”) AND (“machine learning” OR “supervised learning” OR

“unsupervised learning”) AND (“detection” OR “identification” OR “prediction model”) AND

(“software” OR “software engineering”))”

4.1.3 Resources Searched

According to [56], Selection of proper resources to search for a relevant literature plays a

significant role in systematic literature review. There are different repositories that are available

online. According to [85], the online digital libraries IEEE Xplore digital library, ACM digital

library, Science direct, Springer link, Scopus and Engineering village, are recognized as the most

representative for Software Engineering research and are used in many other SLR studies.

Additionally, these databases are reported as the popular venues for publishing papers on machine

learning and bad smell detection studies [58]. But, from those mentioned online sources, this study

uses the following three resources to search for all the available literature relevant that enables to

find answers to the research questions. The selection of those databases was driven merely by the

choice of search term. Meaning, the other databases have a search term limitation that they can

handle a shorter search term with a fewer Boolean operator hence, they are not considered in the

study. The final result doesn’t represent the information from those excluded databases.

50

Table 4. 1 Online digital Libraries accessed

No Name URL

1 IEEE https://ieeexplore.ieee.org/ Xplore/home.jsp

2 ACM https://dl.acm.org/

3 Springer https://link.springer.com/)

With the above adopted search string, all the available documents published on those resources

from the year 2017 to 2020 have been searched and downloaded in to the initial set of materials to

choose from. The materials considered in this study are articles, journals and conference papers.

Accordingly, the IEEE Xplore digital library initially retrieves a total of 41 documents with the

given keyword and year interval. From those documents, 36 of them were conference papers, 4

were journals and the rest document was in the category of early access articles.

Springer on the other hand initially returns a total of 823 search results given the predefined search

term. But, the content type to be considered in the study excludes other type of documents that are

not articles, conference papers and journals. So, the study considers a total of 365 documents which

consists of 268 articles and 97 conference papers.

ACM in the same way retrieves 163 search results containing articles and conference papers related

to every word that are included in the search string from the year 2017 to 2020.

A total of 569 candidate papers were retrieved from those three online databases. This number

shows that there is a significant increase in the number of researches made around this area and

the topic is getting a huge attention from the research community these days comparing to the

studies done on the same ground earlier before 2015.

51

Figure 4. 1 Number of collected studies from 2017 to 2020

It is believed that those search results include all the relevant papers needed to conduct the SLR

and hence decrease the likelihood if excluding important papers. But, still there are lots of papers

that might not have much importance to enable answering the research questions mentioned. So,

a clear filtration of relevant papers is required. This filtration process will be conducted using a set

of an inclusion, exclusion criteria and quality assessment techniques. For this reason, only paper

that can address the following questions will be selected for the final mapping study.

Research Question 1: Which code smells are most commonly detected using machine learning

techniques?

Research Question 2: Which machine learning techniques better applicable to detect code smells?

Research Question 3: What datasets have been used for code smell detection?

4.2 Study Selection

It is worth nothing to include all types of papers (i.e., journal, conference, workshop, and short

papers) with the aim of collecting a set of relevant sources as more comprehensive as possible

[56]. So, selection of proper resources plays a vital role in answering the questions mentioned

earlier. This process of selection should rely on a concrete and clear criterion. Selection of papers

driven with a manual interest could cause in an inappropriate generalization. Hence, in order to

come up with the best representative papers, the study presents those sets of criteria to minimize

the bias of excluding important materials and inclusion of inappropriate resources. So, as depicted

in the above table there are initial set of 569 candidate papers. This number shows that there is a

significant increase in the number of researches made around this topic these days when comparing

to the studies done on the same ground earlier before 2015.

0

100

200

300

400

IEEE ACM Springer

Number of Collected Studies from each digital libraries

Number of Collected Studies from each digital libraries

52

4.2.1 Exclusion Criteria

Exclusion criteria aims at excluding the resources that couldn’t have much importance with respect

to the objectives of the study and the research questions to be addressed. Beginning from the initial

set containing 569 candidate papers, it is required to filter out the papers that meets the following

requirements.

 Papers that were written in other languages rather than in English.

 Papers that have either abstract and keyword or any other segmented text and the

rest full text is not available.

 Papers that focus on design pattern or any other related concept and not exactly

related to the word code or bad smells.

 Papers that put their main focus on other code smell detection tools rather than pure

machine learning techniques.

In this study, the selection of papers with respect to the listed points above is made by checking

the Title, Abstract as well as the keyword of the documents.

4.2.1.1 IEEE documents exclusion process

With respect to the first point of exclusion criteria, one of the documents downloaded from IEEE

digital library fulfills the requirement hence it is excluded due to the fact that it is written in other

language. Another paper has also met the second criteria and its full text is unavailable hence, it is

also excluded from the list. Having the third criteria, 16 documents were excluded because their

main focus was on topics that are not exactly related to code or bad smell detection. Finally, in the

fourth stage 9 papers met the criteria and were excluded from the list of documents to pass to the

next stage of filtration. After the exclusion criteria has been made to all documents, 14 papers out

of 41 made it to the next stage.

4.2.1.2 Springer documents exclusion process

From the considered 365 documents, 8 documents were written in other languages hence excluded

in the first round. The second round excludes 35 documents since their full text isn’t available.

Having the third criteria, 120 documents were excluded because their main focus was on topics

that are not directly related to code, bad smell detection or design defect. Forth criteria also filtered

198 papers because even if the focus of those papers is on code smell, they have either applied

53

other techniques rather than machine learning or their orientation was not merely on the detection

of code smells. Finally, only four papers pass all the criteria.

4.2.1.3 ACM documents exclusion process

The first point of criteria exclusion leads to the exclusion of 2 papers since they were written in

another language. With the second point, 5 papers were excluded because they didn’t contain full

text. There were also 121 papers in which their main focus was on ideas far from the detection of

code smell and fulfill the third criteria hence excluded from the study. Additional 24 studies were

excluded mainly because their aim was on other detection mechanisms rather than pure machine

learning techniques. Accordingly, only 11 studies were able to make it to the second inclusion

criteria.

The first criteria result in the exclusion of 27 documents from IEEE, 361 documents from Springer

and 152 documents from ACM. Totally, 540 documents were excluded from the initial set of 569

documents. Hence 29 documents passed to the next stage.

4.2.2 Inclusion Criteria

Documents that met the constraints reported below were included in the study.

 All the articles directly reporting machine learning techniques for code smells detection.

 All the articles directly reporting the detection of different types of code smell.

 Articles that provide new strategies for improving the performance of existing code smell

detection machine learning techniques.

From the 29 documents that have passed to this stage, the papers that are found to satisfy the

inclusion criteria are 22 documents. While IEEE contributes 11 papers from the total documents,

the rest 11 of them were from Springer and ACM contributing 2 and 9 documents respectively.

4.2.3 Quality Assessment

Once the selection is made with the above criteria, measuring of the quality of the publications is

highly required. Because all papers should be acknowledged for their worth of ability of addressing

the research questions properly. So, in order to assess the credibility of the selected papers, the

below mentioned checklists have been used.

 Are the code smells that the proposed approach detects well-defined? (Q1)

 Is the machine learning classifier used clearly defined? (Q2)

54

 Is the dataset being used by the researcher mentioned clearly? (Q3)

Each of the above questions was marked as “Yes”, “Partially” or “No”. Studies that are marked as

partial are considered because some details could have been driven from the full text, even if they

were not explicitly reported. These answers are scored as follows:

 “Yes” =1,

 “Partially” =0.5, and

 “No” =0.

For each selected primary study, its quality score was computed by summing up the scores of the

answers to all the three questions. The study classified the quality level into High (score = 3),

Medium (2 ≤ score < 3), and Low (score < 2). For this task, a group containing three academicians

whose background is in computer related fields and have accomplished their postgraduate program

in related fields have been selected using purposive sampling. They have jointly discussed and

evaluated each of the studies with respect to the listed quality checklists.

Then this table represents the list of score and status given to all the 22 Papers that pass the

inclusion criteria according to the purposively selected academicians.

55

Table 4. 2 List of papers that pass the inclusion criteria

No Study Quality questions Total Score Status

Q1 Q2 Q3

1 Mhawish, M.Y. et al., 2020 [89] 1 1 1 3 (High) Pass

2 Guggulothu, T. et al., 2020 [66] 1 1 1 3 (High) Pass

3 Cruz, D. et al., 2020 [90] 1 1 1 3 (High) Pass

4 Pecorelli, F. et al., 2019 [91] 1 1 1 3 (High) Pass

5 Luiz, F.C., 2019 [49] 1 1 1 3 (High) Pass

6 Rubin, J. et al., 2019 [92] 0.5 1 0 1.5(Low) Failed

7 Oliveira, D. et al., 2020 [93] 1 0 0 1(Low) Failed

8 Liu, H. et al., 2019 [94] 0.5 1 0 1.5 (Low) Failed

9 Azadi, U. et al., 2018 [95] 1 1 1 3 (High) Pass

10 Guo, X. et al., 2019 [96] 1 1 0.5 2.5(Medium) Pass

11 Pecorelli, F. et al., 2019 [97] 1 0 0 1(Low) Failed

12 Kaur, A. et al., 2017 [98] 1 1 1 3 (High) Pass

13 Gupta, H. et al., 2019 [99] 1 1 1 3 (High) Pass

14 Karađuzović-Hadžiabdić, K. et al., 2018

[100]

1 1 1 3 (High) Pass

15 Das, A.K. et al., 2019 [101] 1 1 1 3 (High) Pass

16 Kiyak, E.O. et al., 2019 [102] 1 1 1 3 (High) Pass

17 Singh, R. et al., 2020 [103] 0 1 1 2 (Medium) Pass

18 Di Nucci, D. et al., 2018 [86] 1 1 1 3 (High) Pass

19 Jesoudoss, A. et al., 2019 [104] 1 1 0 2 (Medium) Pass

20 Yang, Y. et al., 2018 [105] 0 1 1 2 (Medium) Pass

21 Thongkum, P. et al., 2020 [106] 0 1 0.5 1.5 (Low) Failed

22 Chen, D. et al., 2019 [107] 0 0.5 1 1.5 (Low) Failed

Finally, after the quality assessment has been done, 16 studies that scored in high and medium

levels have been selected as a final result of the selection process. The table below presents the

56

overall information starting from the initial set of documents retrieved to the number of papers that

pass the final stage for synthesis. Here is the overall SLR execution process.

Figure 4. 2 Systematic Literature Review (SLR) execution process

Table 4. 3 Overall number of filtered documents throughout the selection process

No

Digital

Library

Total number

of papers

retrieved

Excluded

Papers

Papers

that pass

inclusion

criteria

Papers that failed

inclusion criteria

Papers that

pass Quality

assessment

1 Springer 365 361 2 2 2

2 ACM 163 152 9 2 5

3 IEEE 41 27 11 3 9

Total 569 540 22 7 16

Total of excluded and included

papers

569 papers

Here is the graphical representation of the overall selection stage and result.

57

Figure 4. 3 Number of filtered documents throughout the selection process

4.3 Data Extraction

For the purpose of easy presentation, the selected studies are represented below and will be

alternatively used accordingly throughout the study. So, following this, the study tried to answer

the first three research questions that are expected to be addressed at the end of the study. The final

16 papers (2 from Springer, 5 from ACM and the rest 9 from IEEE) are represented as follows.

0

50

100

150

200

250

300

350

400

Springer ACM IEEE

Total documents Excluded papers papers that pass inclusion criteria Papers that pass Quality assessement

58

Table 4. 4 Quality approved papers and their representation

No Study Representation Digital Library

1 Kaur, A. et al., 2017 [98] S1 IEEE

2 Gupta, H. et al., 2019 [99] S2 IEEE

3 Karađuzović-Hadžiabdić, K. et al.,

2018 [100]

S3 IEEE

4 Das, A.K. et al., 2019 [101] S4 IEEE

5 Kiyak, E.O. et al., 2019 [102] S5 IEEE

6 Singh, R. et al., 2020 [103] S6 IEEE

18 Di Nucci, D. et al., 2018 [86] S7 IEEE

8 Jesoudoss, A. et al., 2019 [104] S8 IEEE

9 Yang, Y. et al., 2018 [105] S9 IEEE

10 Mhawish MY, et al., 2020 [89] S10 Springer

11 Guggulothu T et al., 2020 [66] S11 Springer

12 Luiz, F.C. et al., 2019 [49] S12 ACM

13 Pecorelli, F. etal.,2019 [91] S13 ACM

14 Azadi, U. et al., 2018 [95] S14 ACM

15 Cruz, D. et al., 2020 [90] S15 ACM

16 Guo, X. et al., 2019 [96] S16 ACM

As described earlier the studies collected are bounded to the year interval 2017 to 2020. But the

total number of studies gained after the filtration using necessary steps clearly indicates that this

topic is gaining more attention these days compared to the reviewed papers. There were different

SLR researches made in earlier years. They were able to get this much papers with a huge time

interval but in recent times a comparable or even greater number of papers were retrieved with in

a smaller time interval showing a significant increase of interest. The number of filtered papers by

year is described as follows.

59

Figure 4. 4 Number of studies in each year after selection process

In order to answer the research questions, it is highly required to understand the basic and detailed

information of all the selected studies. Hence, all the required information of the papers is

summarized below.

Table 4. 5 Summary of all selected studies with their detailed information

0

2

4

6

8

2017 2018 2019 2020

No of papers by year

No of papers by year

No Study Machine Learning

Technique used

Code smell detected Dataset Evaluation

Metrics used

1 S1 SVM Data class, Feature

envy, God class and

Long method

XercesV2.7.0, Argo

UMLV0.1.9.8

(Open source software)

Precision and

Recall

2 S2 Linear regression, Logistic

regression, Polynomial

regression, Decision tree,

ELM-linear, ELM-RBF,

ELM polynomial

Blob, Complex

class, Swiss Army

Knife, Long

method, Internal

Getter/Setter, No

low memory

Resolver, Member

ignoring method,

Leaking inner class

629 open source projects

(Available on GitHub)

AUC

60

3 S3 J48, JRip, Naïve Bayes,

Random Forest, SMO,

LibSVM, KNN, Decision

Tree, Multi-Layer

Perceptron, Voted

Perceptron

Data class, God

class, Feature envy,

Long method

76 software systems of

Qualitas corpus composed

of Java systems

Accuracy

4 S4 CNN Brain class, Brain

method

10 Java projects

(Larger in size)

Accuracy

5 S5 C4.5, Random Forest, Naïve

Bayes, SVM, Neural

network, Ensemble ML,

Bagging ML

Long Method,

Feature envy, God

class, Data class

74 open source java

projects in Qualitas corpus

Accuracy,

AUCROC,

Hamming

score, F-

measure,

Exact match

ratio,

6 S6 CNN, SVM, RF, NN, DT,

NBG, LR, Ensemble ML,

SMOTE

Not specified Apache dataset (Camel,

JEdit, Lucence, Poi,

Synapse, Xalan, XeresD)

F-measure

7 S7 J48, JRip, RF, NB, SMO,

LibSVM

Data class, God

class, Feature envy,

Long method

74 software systems

belonging to Qualitas

Corpus

F-measure

8 S8 RF, SVM Bloated code

detector, Lazy class

detector, Primitive

obsession detector,

Duplicated code

detector, Feature

envy detector, Too

many Literal

detector

Not specified Not specified

61

9 S9 Linear Regression, Decision

Tree, Random Forest

Not specified Poi, Velocity, Xalan, Xeres

with different versions

F-measure,

Recall,

Precision and

AUC

10 S10 Deep Learning, Decision

Tree, GBT, SVM, RF, MLP

Data class, Large

class, Feature envy,

Long method

Open source Precision,

Recall, F-

score, Area

Under the

ROC curve

(AUC),

Accuracy.

11 S11 B-Random Forest, Random

Forest, B-J48 Unpruned, B-

J48 Pruned, J48 Unpruned

Long method and

Feature envy

Qualitas corpus

74 Open source projects

Accuracy,

Hamming

Score, Exact

Match Ratio

12 S12 LightGBM, Ensemble,

XGBoost, Cat Boost, Naïve

Bayes, JRip, Soft voting,

Association rule,

Under/Over sampling

Divergent change,

Feature envy, Large

class, Long method,

Parallel inheritance,

Shotgun surgery

Landfill, publicly available

(Open source)

Recall

Precision and

F-measure

13 S13 Class balancer, SMOTE,

Resample, Cost sensitive

classifier, NB

God class,

Spaghetti code,

Class data should

be private,

Complex class,

Long method

125 release of 13 software

systems

Precision,

Recall, F-

measure and

Matthews

Correlation

Coefficient

(MCC).

14 S14 Rule Based, Decision Tree

and Bayesian algorithm

God class, Long

method, Data class,

Feature envy, Long

Software from Qualitas

Corpus Repository

Not specified

62

4.4 Data Synthesis

The main aim of undergoing a Systematic Literature Review is to find all resources that enables

to answer the specific research questions identified by the study. In this study, the SLR seeks to

provide a complete analysis into (i) the sorts of code smells considered by previous researchers,

(ii) the types of machine learning algorithms utilized by researchers, and (iii) the dataset used by

the studies. Hence, with the above detailed information on the studies, this study has tried to

analyze and answer the research questions one by one. The questions are:-

 The code smells that have been detected in the studies

 The machine learning techniques deployed in the studies

 The type of dataset being used by the researchers

Question 1 The code smells that have been detected in the studies

The search and filter approach deployed delivers a total of 16 studies and within those studies 26

types of code smells were detected. The detected smells are Data class, Feature envy, God class

Long method, Blob, Complex class, Swiss Army Knife, Internal Getter/Setter, No low memory

Resolver, Member ignoring method, Leaking inner class, Brain class, Brain method, Bloated code

detector, Lazy class, Primitive obsession, Duplicated code, Too many Literal, Large class,

Divergent change, Parallel inheritance, Shotgun surgery, Spaghetti code, Class data should be

parameter list and

Switch statement

15 S15 Naïve Bayes, Linear

regression, Multi-Layer

Perceptron, Decision tree, k-

Nearest Neighbor, Gradiant

Boosting Machine, Random

Forest

God class, Refused

Bequest, Long

method and Feature

envy

Software from Qualitas

Corpus Repository

F-measure,

Accuracy,

Recall and

Precision

16 S16 Deep semantic based

approach

Feature envy 74 software systems F-measure,

Recall and

Precision

63

private, Long parameter list and Switch statement. Here is the summarized information of which

studies consider which code smell type.

Table 4. 6 Code smell types and the studies considering them

No Code smell Studies Frequency

1 Data class S1, S3, S5, S7, S10, S14 6

2 Feature envy S1, S3, S5, S7, S8, S10, S11, S12, S14, S15,

S16

11

3 God class S1, S3, S5, S7, S10, S13, S14, S15 8

4 Long method S1, S2, S3, S5, S7, S10, S11, S12, S13, S14,

S15

11

5 Blob S2 1

6 Complex class S2, S13 2

7 Swiss Army Knife S2 1

8 Internal Getter/Setter S2 1

9 No low memory Resolver S2 1

10 Member ignoring method S2 1

11 Leaking inner class S2 1

12 Brain class S4 1

13 Brain method S4 1

14 Bloated code detector S8 1

15 Lazy class S8 1

16 Primitive obsession S8 1

17 Duplicated code S8 1

18 Too many Literal S8 1

19 Large class S10, S12 2

20 Divergent change S12 1

21 Parallel inheritance S12 1

22 Shotgun surgery S12 1

23 Spaghetti code S13 1

64

24 Class data should be

private

S13 1

25 Long parameter list S14 1

26 Switch statement S14 1

So, finally it will be easy to generalize the report that tells which code smell have been given more

attention in recent studies. Accordingly, the following generalization has been made: -

 The code smells Long method and Feature envy have been considered by 11 studies.

 The code smells God class and Data class have been considered by 8 and 6 studies

respectively.

 The code smells Complex class and Large class by has been considered by 2 studies.

 The rest code smells have been considered by a single study.

Figure 4. 5 Number of papers by each code smell

0

2

4

6

8

10

12

Number of papers by code smell type

Number of papers by code smell type

65

Question 2 The machine learning techniques deployed in the studies

A total of 38 machine learning techniques have been deployed in the 16 studies. The techniques

are J48, Random Forest, JRip, Naïve Bayes, SVM, Linear regression, Logistic regression,

Polynomial regression, Decision tree, ELM-linear, ELM-RBF, ELM polynomial, SMO, LibSVM,

Multi-Layer Perceptron, Voted Perceptron, CNN, C4.5, Neural network, Bagging ML, NBG, Deep

Learning, , GBT, LightGBM, , XGBoost, CatBoost, Soft voting, Association rule, Under/Over

sampling, Class balancer, SMOTE, Resample, Cost sensitive classifier, One class classifier, Rule

Based, Bayesian algorithm, KNN, Ensemble ML and Deep semantic based approach. The

summarized information of which studies consider the use of which Machine learning techniques

is presented below.

Table 4. 7 Machine learning techniques and the studies considering them

No Machine learning techniques Studies Frequency

1 J48 S3, S7, S11 3

2 Random Forest S3, S5, S6, S7, S8, S9, S10, S11, S15 9

3 JRip S3, S7, S12 3

4 Naïve Bayes S3, S5, S7, S12, S13, S15 6

5 SVM S1, S5, S6, S8, S10 5

6 Linear regression S2, S9, S15 3

7 Logistic regression S2 1

8 Polynomial regression S2 1

9 Decision tree S2, S3, S6, S9, S10, S14, S15 7

10 ELM-linear S2 1

11 ELM-RBF S2 1

12 ELM polynomial S2 1

13 SMO S3, S7 2

14 LibSVM S3, S7 2

15 Multi-Layer Perceptron S3, S10, S15 3

16 Voted Perceptron S3 1

17 CNN S4, S6 2

66

18 C4.5 S5 1

19 Neural network S5, S6 2

20 Bagging ML S5 1

21 NBG S6 1

22 SMOTE S6, S13 2

23 Deep Learning S10 1

24 GBT S10, S15 2

25 LightGBM S12 1

26 XGBoost S12 1

27 CatBoost S12 1

28 Soft voting S12 1

29 Association rule S12 1

30 Under/Over sampling S12 1

31 Class balancer S13 1

32 Resampling S13 1

33 Cost sensitive classifier S13 1

34 Rule Based S14 1

35 Bayesian algorithm S14 1

36 KNN S3, S15 2

37 Ensemble ML S5, S6, S12 3

38 Deep semantic based approach S16 1

So, according to the information above, the study concludes the following findings about machine

learning techniques used in the studies from 2017-2020: -

 The machine learning technique Random Forest has been considered by 9 studies and

hence is the leading machine learning technique used in recent studies.

 The machine learning techniques Decision tree, Naïve Bayes and SVM have been

considered by 7, 6 and 5 studies respectively.

 The machine learning techniques J48, JRip, Linear Regression, MLP and Ensemble ML

have been considered by 3 studies.

67

 The machine learning techniques SMO, LibSVM, CNN, Neural Network, SMOTE, GBT

and KNN each have been considered by 2 studies.

 The rest machine learning techniques have been considered by a single study.

Here is the graphical summary of number of papers by machine learning techniques

Figure 4. 6 Number of papers by each machine learning technique

With regard to the evaluation metrics deployed, Precision, Recall, F-measure, Accuracy,

AUCROC, Exact match ratio, Hamming Loss, Matthews Correlation Coefficient are the

evaluation metrics used in the selected papers. Here is the summarization of information about

those metrics in the studies.

68

Table 4. 8 Evaluation metrics and studies considering them

No Evaluation metric Studies Frequency

1 Precision S1, S9, S10, S12, S13, S15, S16 7

2 Recall S1, S9, S10, S12, S13, S15, S16 7

3 F-measure S5, S6, S7, S9, S10, S12, S13, S15, S16 9

4 Accuracy S3, S4, S5, S10, S11, S15 6

5 AUC ROC S2, S5 S9, S10, S11 5

6 Exact match ratio S5, S11 2

7 Hamming Loss S5, S11 2

8 Matthews Correlation

Coefficient

S13 1

According to the table summarized, F-measure is the leading evaluation metric identified which is

used by 9 studies. Precision and Recall on the other hand are used by 7 studies and Accuracy metric

is considered by 6 studies.

Then by merging the concepts of the first two previous research questions (Q1 and Q2), this study

explores the scenario that which machine learning techniques is best in the detection of a specific

code smell with respect to the most widely used evaluation metrics.

Accordingly, this study has considered the four leading code smells containing two method level

smells (Long Method and Feature Envy) and two class label smells (Data class and God class).

Then the best machine learning technique has been tested against the previously identified (most

commonly used) evaluation metrics which are precision, recall, accuracy and F-measure.

The first metric precision is calculated by the total number of correctly labeled instances (true

positives) divided by the sum of total correctly labeled instances (true positives) and total

incorrectly labeled instances (false positives). The second metric which is recall, is calculated by

the total number of correctly labeled instances (true positives) divided by the sum of total correctly

labeled instances (true positives) and total incorrectly labeled instances (false negatives). The other

metric F-measure is calculated by doubling the product of Precision and Recall divided by the total

69

of Precision and Recall. Finally, Accuracy of a given learning algorithm is calculated by the sum

of total correctly labeled instances (true positives) and (True negatives) divided by the total number

of instances.

1. Long Method

The code smell Long Method has been detected by 11 papers (S1, S2, S3, S5, S7, S10, S11, S12,

S13, S14 and S15). Here is the summery of the performance of the best machine learning technique

used in the studies considering Long Method code smell. But this table excludes the results of S2

and S14. The evaluation metric used in S2 is AUC and hence is out of scope. The other study S14

hasn’t clearly specify the performance metrics so it is not included in the table.

70

Table 4. 9 Best performed machine learning techniques and their performance in each studies

considering Long method smell.

No Studies Evaluation metric and result in % ML technique used

1 S1 Precision 75.5 SVM

Recall 75.45

2 S3 Accuracy 99.76 Random Forest

3 S5 Accuracy 93.6 Random Forest

F-measure 92.8

4 S7 Accuracy 84 LibSVM

F-measure 45 Naïve Bayes

5 S10 Precision 90.16 Random Forest

Recall 100

F-measure 94.8

Accuracy 96.91

6 S11 Accuracy 97.5 B-J48 pruned

7 S12 Precision 72 Catboost

Recall 65 Random Forest

 F-measure 67.94

8 S13 Precision 15 No balancing technique with

Recall 80 One class classifier

F-measure 23 No balancing technique

9 S15 Accuracy 99.1 GBM and KNN

Precision 58.5 Random Forest

Recall 44.9 Logistic Regression

F-measure 23.3 Random Forest

Accordingly, higher results for the code smell Long method in terms of all the metrics Accuracy

Precision, Recall and F-measure is gained with the classifier Random Forest with the results 99.76,

90.16, 100 and 94.8 respectively. Additionally, higher Accuracy is registered by S3. Precision

71

Recall and F-measure exhibits higher result in S10. So, it clearly shows that Random Forest is the

best machine learning technique in the detection of Long method with a very promising result.

2. Feature Envy

The code smell Feature Envy has been detected by 11 papers (S1, S3, S5, S7, S8, S10, S11, S12,

S14, S15 and S16). The studies S8 and S14 don’t clearly specify the type of evaluation metric used

hence, the information from them isn’t considered.

72

Table 4. 10 Best performed machine learning techniques and their performance in each studies

considering Feature Envy smell.

No Studies Evaluation metric and result in % ML technique used

1 S1 Precision 67.9 SVM

Recall 62.25

2 S3 Accuracy 99.67 MLP

3 S5 Accuracy 93.6 Random Forest

F-measure 92.8

4 S7 Accuracy 84 LibSVM

J48 pruned F-measure 50

5 S10 Accuracy 96.91 Random Forest

Precision 96.43

Recall 98.18

6 S11 Accuracy 97.5 B-J48 pruned

7 S12 Precision 79 Random Forest

 Recall 42 Soft voting

 F-measure 47.15 Random Forest

8 S15 Accuracy 96.5 KNN and GBM

Precision 67.7 Random Forest

Recall 38.6 Logistic Regression

F-measure 28.1 Random Forest

9 S16 Precision 97.07 Deep semantic based

approach

Recall 99.13 Deep semantic based

approach

F-measure 98.09 Deep semantic based

approach

According to the information in the table, higher results for the code smell Feature Envy in terms

of Accuracy is gained by MLP (99.67) in S3. In terms of Precision, and Recall and F-measure,

the classifier Deep semantic based approach has showed higher result 97.07 and 99.13 and 98.09

73

respectively in S16 compared to the other techniques. Showing that MLP and Deep semantic based

approach could be the best machine learning techniques in the detection of the code smell Feature

Envy.

3. Data Class

The code smell Data Class has been detected by 6 papers (S1, S3, S5, S7, S10 and S14). The study

S14 hasn’t clearly specify the performance metrics so it is not included in the table. The rest papers

with their performed and ML technique used are listed below.

Table 4. 11 Best performed machine learning techniques and their performance in each studies

considering Data Class smell.

No Studies Evaluation metric and result % ML technique used

1 S1 Precision 85.55 SVM

Recall 77

2 S3 Accuracy 98.57 Random Forest

3 S5 Accuracy 96.9 Random Forest

F-measure 97.5 Random Forest

4 S7 Accuracy 84 LibSVM

F-measure 57 J48 pruned

5 S10 Accuracy 97.11 Random Forest

 Precision 97.2 Random Forest

 Recall 100 GBT

Hence, according to the information above, best accuracy, F-measure and precision result is gained

by the Random Forest classifier in the studies S3, S5 and S10. On the other hand, the best Recall

result is gained GBT in S10. So, the ML techniques Random Forest and GBT are the best

techniques for the detection of the smell Data class.

4. God Class

The code smell God Class has been detected by 7 papers (S1, S3, S5, S7, S10, S13, S14 and S15).

The other study S14 hasn’t clearly specify the performance metrics so it is not included in the

table. In addition, the study has tried to calculate the F-measure result given the precision and

recall. But only in a case that both the recall and precision are gained by the same ML technique

74

in the same study and if it’s believed that the F-measure result could be comparable to the F-

measure of other studies. The F-measure of S1 is calculated by the following formula.

Table 4. 12 Best performed machine learning techniques and their performance in each studies

considering God Class smell.

No Studies Evaluation metric

and result %

 ML technique

used

1 S1 Precision 95.35 SVM

Recall 90.15

F-measure 92.7

2 S3 Accuracy 97.86 JRip

3 S5 Accuracy 96.9 Random Forest

F-measure 97.5

4 S7 Accuracy 84 LibSVM

F-measure 58 B-J48 reduced

error pruning

5 S10 Accuracy 97.11 Random Forest

Precision 96.24 SVM

Recall 96.24 Random Forest

6 S13 Precision 26 SMOTE and NB

Recall 93

F-measure 41

7 S16 Precision 97.07 Deep semantic

based approach

Recall 99.13

F-measure 98.09

Hence, best accuracy results 97.86 is gained by JRip in S3. The best results F-measure and Recall

and precision were gained by 98.09 and 99.13 and 99.07 were gained by Deep semantic based

approach in S16. Indicating that JRip and Deep semantic based approach are the best machine

learning techniques in the detection of God class.

75

Question 3 The dataset used in the studies

A different kind of datasets have been used in these studies. But this study has summarized the

dataset being used as i. Kind of dataset used ii. Nature of dataset as an open source (publicly

available) or other projects datasets (Industrial) and iii. Nature of dataset as cross-project or within

project dataset. Some of the datasets used are Xceres, Argo UML, open-source projects Available

on GitHub, software systems of Qualitas corpus, Apache dataset containing Poi, Xceres, Xalan,

and Velocity with their different versions.

Table 4. 13 Type of dataset used

No The dataset used Studies Frequency

1 Xerces S1, S6, S9 3

2 Argo UML S1 1

3 Apache dataset containing Camel, JEdit, Lucence,

Poi, Synapse, Xalan and XeresD

S6 1

4 Qualitas corpus containing java projects S3, S5, S11, S14,

S15

5

5 Velocity S9 1

6 Landfill S12 1

7 Poi S6, S9 2

8 Xalan S9 1

9 Synapse S6 1

10 Camel S6 1

11 JEdit S6 1

12 Lucence S6 1

13 Others (names not mentioned but open source) S10, S11, S13, S16 4

76

Table 4. 14 The nature of dataset being used (open source (publicly available) or other projects

datasets (Industrial)

No Type of dataset used Studies Frequency

1 Open source (publicly

available)

S1, S2, S3, S5, S6, S7, S9, S10, S11, S12, S13,

S14, S15

13

2 Other projects datasets

(Industrial)

S4, S16 2

Table 4. 15 Nature of dataset as cross project or within project dataset.

No Type of dataset used Studies Frequency

1 Cross-project dataset S1, S2, S3, S4, S5, S6, S7, S9, S10, S11, S12, S13,

S14, S15, S16

15

2 within project

dataset

No studies 0

77

CHAPTER FIVE

REPLICATION STUDY

This section describes the methodology followed including the referred datasets and steps used to

prepare the multi-class dataset by using the instances of two referred datasets. Then, it presents the

application of selected machine learning techniques on the target dataset. Hence, a set of

experiments conducted were presented.

5.1 Replication Study

Replication is the process of recreating a research study, usually with various scenarios and

individuals, to see if the core conclusions of the original study can be applied to different parties

and situations [66]. Replication study aims at repeating a study’s data and methodology in order

to prove or disprove whether a result of a given study can have the same effect in another

environment. A researcher can use the same dataset to repeat a study and see if other

methodologies can affect the dataset in the same way. Similarly, a researcher can use the same

methodology used by the reference work and apply it on other dataset to check if the given

methodology can influence the new dataset similarly. Replication study enables a methodological

or subject dependency comparison between of a reference work and one’s original work.

5.2 The smells Dataset

5.2.1 Code smell Dataset Information

The input for code smell dataset is an instance of a method or a class containing fragment of code.

A set of software metrics for each code instances are then computed manually. Additionally, their

final smell category will be detected using either manual detection method or using a detection

tool. There are different software metrics. The most commonly applied software metrics according

to [66] are Size, Complexity, Coupling, Encapsulation and Inheritance are presented in the table

below. The use of those metrics differs from one code smell type to other. But the method level

smells dataset incorporates most of the metrics calculated in class, package and project level due

to the containment relation. The containment relation defines that a method is contained in a class,

a class is contained in a package, and a package is contained in a project [66]. But this work focuses

on method-based code smell instances hence, excludes metrics of class, package, and project.

78

Table 5. 1 Software metrics and their category

No Quality

Dimension

Metric Label Metric Name Data Type Granularity

1 Size LOC Lines of Code Numeric Project,

Package,

Class, Method

LOCAMM Lines of Code Without

Accessor or Mutator

Methods

Numeric Class

NOPK Number of Packages Numeric Project

NOCS Number of Classes Numeric Project,

Package

NOM Number of Methods Numeric Project,

Package,

Class

NOMNAMM Number of Not

Accessor or Mutator

Methods

Numeric Project,

Package,

Class

NOA Number of Attributes Numeric Class

2 Complexity CYCLO Cyclomatic

Complexity

Numeric Method

WMC Weighted Method

Count

Numeric Class

WMCNAMM Weighted Method

Count of Not Accessor

or Mutator Methods

Numeric Class

AMW Average Methods

Weight

Numeric Class

AMWNAMM Average Methods

Weight of Not

Numeric Class

79

Accessor or Mutator

Methods

MAXNESTING Maximum Nesting

Level

Numeric Method

CLNAMM Called Local Not

Accessor or Mutator

Methods

Numeric Method

NOP Number of Parameter Numeric Method

NOAV Number of Accessed

Variable

Numeric Method

ATLD Access to Local Data Numeric Method

NOLV Number of Local

Variable

Numeric Method

3 Coupling FANOUT Numbers of modules

that called by a given

module.

Numeric Class, Method

FANIN Number of modules

that call a given

module.

Numeric Class

ATFD Access to Foreign Data Numeric Method

FDP Foreign Data Provider Numeric Method

RFC Response for a Class Numeric Class

CBO Coupling between

Object Classes

Numeric Class

CFNAMM Called Foreign Not

Accessor or Mutator

Methods

Numeric Class, Method

CINT Coupling Intensity Numeric Method

MaMCL Maximum Message

Chain Length

Numeric Method

80

MeMCL Mean Message Chain

Length

Numeric Method

NMCS Number of Message

Chain Statements

Numeric Method

CC Changing Classes Numeric Method

CM Changing Methods Numeric Method

CDISP Coupling Dispersion Numeric Method

4 Encapsulation NOAM Number of Accessor

Methods

Numeric Class

NOPA Number of public

Attributes

Numeric Method,

Class

LAA Locality of Attribute

Access

Numeric Method

5 Inheritance DIT Depth of Inheritance

Tree

Numeric Class

NOI Number of Interfaces Numeric Project,

Package

NOC Number of Children Numeric Class

NMO Number of Methods

Overridden

Numeric Class

NIM Number of Inherited

Methods

Numeric Class

NOII Number of

Implemented Interfaces

Numeric Class

5.2.2 Software systems selected for dataset preparation

In this work, two method-level datasets (long method and feature envy) have been considered.

These two datasets were originally prepared by Fontana at [22]. Then they were made available

for other researchers by [86]. The researchers have prepared the datasets in a form that can be

applied directly by any researcher. The researchers [66] have pointed out that Fontana [22] have

81

analyzed the Qualitas Corpus software systems which was collected from [108]. Originally, the

Qualitas Corpus consists 111 systems but, 74 systems are considered for smell detection. The

remaining 37 systems cannot detect code smells as they are not successfully compiled [66]. The

size (lines of code etc…) of the 74 Java projects are shown in table below. These projects also

cover different application domains like database, tool, middleware, and games. The complete

characteristics (sizes, release date, etc.) of each project and the domain they belong to is also made

available online by the researcher.

Table 5. 2 Summary of the 74 open-source software systems from Qualitas corpus

Number of

Projects

Number of lines

in all projects

Number of packages

in all projects

Number of classes

in all projects

Number of methods

in all projects

74 6,785,568 3420 51,826 404,316

4.2.3 Reference datasets

The datasets covering a variety of code smell types have been prepared by using automatic code

smell detection tools to detect whether the source code element is smelly or not. Fontana [22] have

computed metrics at all levels by using the tool “Design Features and Metrics for Java” (DFMC4J).

According to [66] this tool parses the source code of Java projects through the Eclipse JDT library.

Then the computed metrics become attributes of the datasets. PMD, Fluid Tool and iPlasma are

the automatic code smell detection tools used to build code smell datasets. These datasets are

available at http://www.essere.disco.unimib.it/machine-learning-for-code-smell-detection/. The

datasets contain a set of software metrics computed and the final class describing the smelliness

of a given instance as smelly or non-smelly which was previously detected by Fontana, F.A. et al.,

at [22]. In the two method level datasets (Long Method and Feature Envy) that are made available

by Guggulothu, T. at [66], there are around 840 code instances. Each dataset contributing 420

instances. Additionally, among the 420 instances, 1/3 (140) are smelly and 2/3 (280) are non-

smelly.

http://www.essere.disco.unimib.it/machine-learning-for-code-smell-detection/

82

Table 5. 3 Smell distribution of the two original method level datasets

Total number of Instances The Method level datasets

Long Method Feature Envy

Smelly instances Non-Smelly

instances

Smelly instances Non-Smelly

instances

840 140 280 140 280

These datasets are composed of common instances that share common metrics and different

instances that belong to either of the two datasets exclusively. But the metric distribution in those

two datasets is equal. Both containing the same metrics throughout their dataset. According to

Marinescu, R. at [109] these two smells also cover different object-oriented quality dimension

problems such as complexity, size, coupling, encapsulation, cohesion, and data abstraction.

The main reason for choosing the datasets is, according to the researcher at [110], these code smells

are more frequent and fault prone or change prone as per literature. It has also been reported that

there is a strong correlation among the smells when detecting the code smell by the reference work.

 Long method: When a method has a lot of lines of code and needs a lot of data from other

classes, it's called a long method. This increases the functional complexity of the method

and it will be difficult to understand [66]. It represents a large method that implements

more than one function [86].

 Feature envy: Feature Envy is a code smell that develops when a method utilizes much

more data than another class in comparison to the one it is in [86].

According to [66], many studies have considered the detection of the existence a single code smell

in a given method instance with the help of ML classifiers. That is the detection of an instance to

be either Non- smelly or Smelly of a single code smell, making it less reliable. Hence, they planned

to formulate a different approach which is a multi-label classification (MLC) problem using three

multi label problem transformation methods and proposed the use of Multi-Labeled Dataset

(MLD). Their study considers the two method level smells Long Method and Feature Envy. This

initial study led to the idea of merging the datasets in one of the best ways and form a Multi-Class

Dataset containing the existence of the two code smells and their intersection introducing better

label correlation.

83

5.3 Limitations of the reference work

According to Di Nucci, D. et al. at [86], most of the ML techniques have achieved a higher result

in terms of accuracy and F-measure result. Especially J48 and Random Forest classifiers higher

than 95%. The researchers have pointed out two major aspects that they believe would influence

the performance of the classification algorithms. The first is the representation of instances in the

dataset and the second is the use of balanced dataset.

 The preparation in terms of representation of instances to be used in the dataset

Almost all the datasets prepared by different researchers represent the occurrence of a

single type of smell in a given code instance. In fact, there is a probability for a given code

instance to be affected by more than one code smell type. This scenario is very unrealistic

and might be the reason behind the very high result. The classification algorithm may find

it easier to discriminate the smelly instances from the non-smelly one.

 Balanced dataset

According to recent findings on the smelliness of code smells, a small fraction of a software

system is usually affected by code smells, resulting in bias towards the largest class label.

In order to alleviate the data imbalance issue, the researchers have assessed the possibility

of a different balancing techniques between smelly and non-smelly instances.

Hence, based on the idea of the reference work, it has been indicated that multi class transformation

can genuinely represent label correlation compared to the widely known binary relevance method.

As a result, this study also merged datasets using one class label containing four classes.

The total number of metrics used by the reference work is also very large in number. This

aggregation of less relevant attributes could cause in complexity which in turn can result the

emergence of a less efficient model.

So, this study tries to address the above listed issues by introducing a multi class dataset, a more

pure dataset (fewer attributes and class balancing approach) and using ML algorithms from

different categories of classifiers selected through mapping study that has not previously been

jointly studied by any practitioner.

84

5.4 The process of Multi-Class Dataset Preparation

In order to prepare the Multi-Class Dataset containing the existence of two code smell types, this

study has used two different and stand-alone datasets mentioned above. Those two Datasets are:-

 The dataset containing the existence of a Long Method code smell (which is represented

as smelly and Non-smelly).

 The dataset containing the existence of a Feature Envy code smell (again represented as

smelly and Non-smelly) for each corresponding instances.

Having the binary class dataset, the study considers the common instances (that belong to both

datasets) that are available in both Datasets and consider their final class label as the final result of

the labeling. So, here is the rule followed by this study to prepare the MCD. But as a precondition

the instances should be available in both Datasets. So, before all those rules below, it is checked

that the precondition is met.

 If an instance is labeled as Non-smelly in both Long Method and Feature Envy Datasets,

then it is labeled as Non-smelly.

 If an instance is labeled as smelly in Long Method and Non-smelly in Feature Envy

Dataset, then it is labeled as Long Method.

 If an instance is labeled as Non-smelly in Long Method and smelly in Feature Envy

Dataset, then it is labeled as Feature Envy.

 If an instance is labeled as smelly in both Long Method and Feature Envy Datasets, then it

is labeled as Both (instance consisting the existence of the two code smells).

The reason for picking the common instances is that it is hard for the instances that are not available

in the other Datasets to label as the value they contain in the Dataset containing them. This would

raise a disparity problem [66], resulting in the confusion of the learning technique and preventing

it from clearly distinguishing the difference between the one that is solely true code smell with the

one that has the probability of being true or false.

For instance, if a given instance is available as positive (smelly) in the LM Dataset and doesn’t

exist in the FE Dataset, it shouldn’t be considered as an instance containing LM only. When the

fact is that this instance isn’t considered in the FE doesn’t guarantee that it’s free from the FE code

smell. This shows that there is a probability for this instance to become affected by FE code smell

85

and should be considered as both. So, to keep this clarity and avoid further confusion for the

learner, it is a best choice to discard such instances. Here is how the binary class Dataset are merged

in to form the Multi-Class Dataset.

Figure 5. 1 Multi Class Dataset preparation

Where, Inst stands for code instance, Att for Attribute and – representing the value an attribute

holds for a given instance.

The instances Inst 7, Inst 9, Inst 10 and Inst 11 are exclusive, i.e. the instance in one Dataset doesn’t

belong to the other Dataset and it’s hard to generalize the real class label of such data blindly,

hence are rejected in the Multi-Label Dataset.

So, the major motive behind the preparation of the Multi-Class Dataset is that a single instance

(method) may be affected by different code smells. The fact that an instance is not affected by a

given smell doesn’t necessarily indicate it is not affected by the other/s or is free from any other

86

code smells. Hence the Multi-Label Dataset used in this study increases the representativeness of

the real-world scenario compared to the single class smell Dataset.

5.5 Design Metrics Definition and Computation Details

The smells dataset adopted in this study consists of a set of software metrics that are computed by

the researcher at [22]. Some design metrics are stand alone and their value is derived directly from

the origin (source code). While in case of some others, the result of a given design metric can

depend upon one or more design information gained from other design metrics. So, in order to

calculate the value of some metrics there is a need to consider other independent metrics. Hence,

in order to keep the clarity, the metrics are presented according to the information flow required.

This study has considered 55 initial design metrics at different levels. The metrics used along with

their acronym in the original csv dataset and their computation detail is presented in the Appendix

section of this study.

5.6 Experimental setup

 5.6.1 Data preprocessing

A total of 395 common instances formed the MCD. Originally there were 82 software metrics

(attributes) and a final class label consisting of four classes. The class distribution in this dataset

is highly imbalanced. There are four classes in the dataset. The one that contains the existence of

Non-smelly instances, the one that contains the existence of Feature Envy instances, the one that

contains the existence of Long Method instances and the one that contains the existence of both

Feature Envy and Long Method instances. Those classes contribute 223, 41, 46 and 85 instances

respectively to the dataset. The Non-smelly instances still hold the largest proportion in the dataset

similar to the reference datasets. While the rest classes cover a small proportion making it highly

imbalanced. Additionally, some attributes in the dataset contains missing values. The experiments

are conducted in WEKA which is one of the powerful data preprocessing and synthesizing tool

[86].

5.6.1.1 Initial data preparation

Most real-world datasets contain different impurities. Those impurities could lead to wrong and

complex findings and should be addressed well. Data cleaning is a process of preparing a purer

data that should be fed to the learning algorithms. Data cleaning and preparation is an essential

and prior step in the classification task. Properly prepared dataset provides a better result. The data

87

cleaning process in this specific study incorporates data balancing and attribute filtration and

selection. The dataset doesn’t contain any missing values for the selected metrics.

As mentioned above, the original dataset contains a total of 88 columns. But the task of

classification becomes complex with the increased number of attributes. What is more is that all

those attributes don’t have equal relevance to the classification purpose. So, it is better to discard

such attributes. With this idea, in the first round five attributes were reduced because they don’t

have any relevance to the classification purpose. After the removal of those attributes, the dataset

was left with 82 attributes and the class label. But the dataset still requires further filtration.

According to [66], the method level software metrics computed around the five object-oriented

quality dimensions are the very critical attributes to consider. Accordingly, this study has filtered

additional 36 attributes and discard them in the second round. Finally resulting in 46 columns

containing the basic software metrics at method level. The detailed data preparation is presented

as follows.

5.6.1.2 Attribute Selection

Another type of impurity a dataset encounter is a set of attributes that might not be strongly tied to

the value of the final class. Such attributes (columns) increase the dimensionality of the dataset

but may not have an importance. Hence, the dataset become unmanageable and complex because

of them. On the other side reduced number of features increases understandability. Those irrelevant

attributes (attributes that could not be helpful for some tasks of classification or other purpose)

should be removed prior to application of any technique. Removal of those attributes will be

required to come up with reduced number of attributes. Hence, from the original dataset containing

82 attributes, 36 (25, 5 and 6) attributes were filtered out as they were software metrics that are

calculated at the level of class, package and project respectively. Those attributes are irrelevant to

the method-level code smells because they do not contribute to detection of the method level code

smells. Additionally, [66] has reported that that Method metrics can cover all the structural

information (coupling of other classes, etc.) of the methods.

But, even after the initial removal of attributes, there are still a number of attributes with different

level of importance. Attribute ranking is one of those things that can really improve the

performance of a machine learning models. The rest 46 attributes and one final class were feed to

the WEKA to check their relevance with respect to their contribution towards the class label. All

88

attribute are not equally relevant for predicting the target. So, we need to first evaluate the

usefulness of each attribute before conducting any experiment. In order to check the order of

relevance of those attributes, this study has proposed the use of one of the most popular attribute

selection methods, information gain technique.

Information Gain is an attribute ranking technique that tells how important a given attribute is and

helps to decide the order of attributes in the node. It is calculated based on entropy value of an

attribute. It is the ID3 algorithm calculates a sample's homogeneity using entropy. The entropy of

a perfectly homogenous sample is zero, while the entropy of an evenly divided sample is one. The

weighted Entropy of each attribute is subtracted from the original (class) Entropy to calculate

Information Gain. Let D be the training data and C the different classes of the dataset D. The

general working of this selection method is presented below.

First Calculate the Expected information (entropy) needed to classify an instance in D

 Entropy (E (D)) =∑ 𝑃𝑖 𝐿𝑜𝑔2 (𝑃𝑖𝑀
𝑖=1)

Where pi denotes the probability that each given instance in D (training data) belongs to class C1,

as determined by |C1, D|/|D|.

Entropy (E (D)) is the average amount of information required to determine an instance's class

label in D.

Then Calculate the information needed of an attribute. Assume that attribute A can be utilized to

divide D into n partitions or subsets, D1, D2,..., Dn, with Dj containing those occurrences in D that

have A result aj. To classify D, the following information is needed (after using A to split D):

 InfoA (D) = ∑
𝐷𝑗

𝐷
𝑋 𝐼𝑛𝑓𝑜(𝐷𝐽)

𝑉

𝐽=1

The purity of the partitions increases as the predicted information required decreases. The

following is the information obtained by branching on attribute A:

 Gain (A) = E (D)-InfoA(D)

89

Generally, information gain increases with the increase in the average purity of the subsets. As

the splitting attribute, the attribute with the highest information gain among the attributes is chosen.

After the information gain for each attribute is calculated, the one with the highest information

gain will be selected as the root node, and the calculation will be continued recursively until the

data is completely classified. Indicating that, when utilizing these measures (metrics) to train a

decision tree, the best split is determined by maximizing Information Gain. Here is the information

gain value of the attributes.

Table 5. 4 Attribute ranking using Information Gain

No Attribute Name Information Gain

Value

1 NOAV_method 1.00707

2 LOC_method 0.98359

3 CYCLO_method 0.97812

4 ATFD_method 0.86311

5 MAXNESTING_method 0.8582

6 NOLV_method 0.82567

7 FDP_method 0.73726

8 CINT_method 0.72594

9 LAA_method 0.69413

10 CDISP_method 0.60157

11 CFNAMM_method 0.59797

12 FANOUT_method 0.54763

13 CLNAMM_method 0.25539

90

14 NOP_method 0.23748

15 ATLD_method 0.18219

16 MaMCL_method 0.11764

17 NMCS_method 0.11222

18 MeMCL_method 0.11222

19 number_standard_design_methods 0.10896

20 number_not_abstract_not_final_methods 0.10888

21 number_private_visibility_attributes 0.10485

22 number_not_final_not_static_methods 0.1039

23 num_final_attributes 0.10337

24 number_private_visibility_methods 0.08788

25 num_static_attributes 0.08565

26 num_final_static_attributes 0.07049

27 num_not_final_not_static_attributes 0.07001

28 num_final_not_static_attributes 0.06751

29 number_protected_visibility_methods 0.05871

30 number_static_methods 0.04515

31 number_package_visibility_methods 0.04278

32 number_package_visibility_attributes 0.04027

33 CC_methods 0

91

34 CM_methods 0

35 is_static_methods 0

36 is_static_type 0

37 number_not_final_static_methods 0

38 number_constructor_Defaultconstructor_methods 0

39 number_final_static_methods 0

40 number_final_not_static_methods 0

41 number_abstract_methods 0

42 number_constructor_NotDefaultconstructor_methods 0

43 number_static_not_final_attributes 0

44 number_public_visibility_methods 0

45 number_final_methods 0

46 number_protected_visibility_attributes 0

The attributes with higher information gain value are believed to have a better contribution to the

prediction. This study has used a default threshold value to discriminate the attributes and selected

the most important attributes because, it doesn’t mean all attributes are equally relevant to the

classification task. So, the study has removed the attributes with information gain value “0” Hence

this study uses a total of 32 attributes after the removal of fourteen attributes. Then the task of

classification is held according to the significance level (ranking) of the attributes.

92

5.6.1.3 Data Balancing

The other most important data preparation process is Data balancing. Data balancing can be

applied to the datasets where there is an imbalanced proportion among the class labels. Data

balancing is a very essential step prior to any classification task. The process of data balancing

enables a better proportion among the final classes. This helps the minority classes from being

mistreated by the classification algorithm. As described earlier, there is a higher-class imbalance

among the classes of the adopted dataset. This is because the code smell dataset contains a higher

proportion of Non-smelly instances.

Figure 5. 2 Class proportion of the original dataset

In order to alleviate this data imbalance problem, the study has proposed the use of SMOTE

technique. SMOTE is an oversampling technique that generates synthetic samples from the

minority class [91]. SMOTE gives attention to minority classes and increases their proportion in

the dataset helping them to be equally treated with majority class. All the classes except the Non-

smelly are considered as minority classes in this study. So, in the first stage of sampling the study

has applied all the default parameters to the three class labels resulting in doubling of the instances.

The class “Both” seemed balanced with the first class “Non-smelly”. But, the rest two classes are

still minor compared to the others.

The balancing shows improvement compared to the original one. But, the sampling process still

requires additional SMOTE to the second and forth classes. Hence the study undergoes the process

again to balance those two with the others with all default parameters.

93

It is required for the result after SMOTE to not interfere with the original appearance of classes in

the dataset. So, even if the classes seem quite balanced, the number of instances in the class “Long

Method” were less than that of the instances in class “Both”. In order to maintain the consistency

of appearance of classes in the original data, the study apples SMOTE again to the class “Both”.

But, this time with the percentage value (parameter) degraded to 10 so that it won’t have larger

value than the first class “Non-smelly”.

 Figure 5. 3 Original Class distribution Vs Class distribution after SMOTE

The above figure depicts that the classes are now balanced and also maintain their original

appearance. A well-balanced data provides a more concrete result. The task of classification then

will be applied on the new balanced dataset.

5.7 Experiments and Experimental Results

After the dataset has been properly preprocessed, the next step will be feeding the data to the

classification algorithms. In the third chapter, this study was able to point out which techniques

are most commonly used in the detection of the most widely studied code smells. Since the

experimental work of this study focuses on the two method-level smells (Long Method and Feature

Envy), it considers the most commonly applied machine learning techniques to detect them.

Accordingly, by referring to the earlier chapter, Random Forest, Tree based, Naive Bayes are the

most commonly used ML techniques while the higher result for the Long Method smell is gained

through RF and Tree based classifiers. This study has presented the experiments under different

94

scenarios. All experiments are conducted under 10-fold cross validation. The main reason is that

the size of the dataset is quite small in size to perform further split. Therefore, it is believed that

this splitting technique can represent the dataset well.

5.7.1 Experiment 1 Application of J48 Technique

The first experiment is run using the J48 algorithm. This experiment is conducted under the 10-

fold cross validation and has used all the default values of J48 algorithm in WEKA. The result of

the experiment shows that from the total 758 instances, the algorithm was able to classify 730

(96.3061 %) instances accurately. The number of incorrectly classified instances is 28 (3.6939 %).

Figure 5. 4 Summary of performance of J48

5.7.1.1 The detailed information by class of J48 algorithm

Table 5. 5 The detailed information by class of J48 algorithm

Detailed information by class

 TP Rate FP Rate Precision Recall F-Measure Class

0.982 0.004 0.991 0.982 0.986 Non smelly

0.963 0.012 0.958 0.963 0.960 Feature Envy

0.941 0.014 0.957 0.941 0.949 Both

0.962 0.019 0.941 0.962 0.952 Long Method

Weighted Avg. 0.963 0.012 0.963 0.963 0.963

95

5.7.1.2 Confusion Matrix for J48 algorithm

Table 5. 6 Confusion Matrix for J48 algorithm

Confusion Matrix

a B C D Classified as

219 3 0 1 a = Non smelly

1 158 3 2 b = Feature Envy

0 3 176 8 c = Both

1 1 5 177 d = Long Method

5.7.2 Experiment 2 Application of Random Forest Technique

The second experiment applies Random Forest algorithm. From the total 758 instances, the

algorithm was able to detect 739 instances correctly. The rest 19 instances were incorrectly

classified. The algorithm was able to classify 97.4934 % of instances accurately from the total.

Figure 5. 5 Summary of performance of Random Forest

96

5.7.2.1 The detailed information by class of Random Forest algorithm

Table 5. 7 The detailed information by class of Random Forest algorithm

Detailed information by class

 TP Rate FP Rate Precision Recall F-Measure Class

0.964 0.002 0.995 0.964 0.979 Non smelly

0.982 0.010 0.964 0.982 0.973 Feature Envy

0.973 0.009 0.973 0.973 0.973 Both

0.984 0.012 0.963 0.984 0.973 Long Method

Weighted Avg. 0.975 0.008 0.975 0.975 0.975

5.7.2.2 Confusion Matrix for Random Forest algorithm

Table 5. 8 Confusion Matrix for Random Forest algorithm

Confusion Matrix

A B C D Classified as

215 6 0 2 a = Non smelly

0 161 3 0 b = Feature Envy

0 0 182 5 c = Both

1 0 2 181 d = Long Method

5.7.3 Experiment 3 Application of JRip Technique

The third experiment applies JRip algorithm with all the default parameters. The algorithm was

able to distinguish 710 of out of 758 instances correctly. In terms of accuracy the algorithm was

able to score an accuracy rate of 93.6675 %. The rest 48 instances (6.3325 %) were incorrectly

classified by the algorithm.

97

Figure 5. 6 Summary of performance of JRip

5.7.3.1 The detailed information by class of JRip algorithm

Table 5. 9 The detailed information by class of JRip algorithm

Detailed information by class

 TP Rate FP Rate Precision Recall F-Measure Class

0.960 0.024 0.943 0.960 0.951 Non smelly

0.915 0.012 0.955 0.915 0.935 Feature Envy

0.936 0.028 0.916 0.936 0.926 Both

0.929 0.021 0.934 0.929 0.932 Long Method

Weighted Avg. 0.937 0.022 0.937 0.937 0.937

5.7.3.2 Confusion Matrix for JRip algorithm

Table 5. 10 Confusion Matrix for JRip algorithm

Confusion Matrix

A B C D Classified as

214 5 1 3 a = Non smelly

9 150 5 0 b = Feature Envy

2 1 175 9 c = Both

2 1 10 171 d = Long Method

98

5.7.4 Experiment 4 Application of Naïve Bayes Technique

The fourth experiment applies Naïve Bayes and with this algorithm a percentage of 90.5013 %

instances were classified accurately. Indicating that from the total 758 instances, 686 of them were

detected correctly. The rest 72 instances were classified incorrectly.

Figure 5. 7 Summary of performance of Naïve Bayes

5.7.4.1 The detailed information by class of Naïve Bayes algorithm

Table 5. 11 The detailed information by class of Naïve Bayes algorithm

Detailed information by class

 TP Rate FP Rate Precision Recall F-Measure Class

0.928 0.015 0.963 0.928 0.945 Non smelly

0.854 0.019 0.927 0.854 0.889 Feature Envy

0.893 0.053 0.848 0.893 0.870 Both

0.935 0.040 0.882 0.935 0.908 Long Method

Weighted Avg. 0.905 0.031 0.907 0.905 0.905

5.7.4.2 Confusion Matrix for Naïve Bayes algorithm

Table 5. 12 Confusion Matrix for Naïve Bayes algorithm

Confusion Matrix

A B C D Classified as

207 6 4 6 a = Non smelly

8 140 14 2 b = Feature Envy

0 5 167 15 c = Both

0 0 12 172 d = Long Method

99

The confusion matrix of Naïve Bayes shows that 207 out of 223 instances of “Non-smelly” class

were classified in their true class. In the second-class label “Feature Envy”, 140 instances were

classified in their actual class. From the instances of third class “Both”, 167 of them were classified

accurately. Finally, from the fourth class “Long Method”, 172 of them were accurately classified.

So, totally 686 instances from the dataset were classified correctly.

Finally, the result of the experiments show that Random Forest scores best compared to the rest.

But the study further proposes to enhance the performance of the best learning technique (Random

Forest). Hence, planned to change parameters and check if they can improve the result gained

through default parameters. By arranging the seed size to different values, the study checks for

better results. Seed size is a random value to be set for a given algorithm. The result of experiments

with different seed size is presented below.

5.7.5 Experiment 5 Applying Random Forest with different seed size

Table 5. 13 Random Forest performance with different seed size

Scenarios

for RF

Seed

size

TP Rate FP Rate Precision Recall F-Measure Accuracy

Default 1 0.975 0.008 0.975 0.975 0.975 97.4934

Scenario 1 10 0.978 0.007 0.978 0.978 0.978 97.7573

Scenario 2 100 0.979 0.007 0.979 0.979 0.979 97.8892

Scenario 3 1000 0.972 0.009 0.973 0.972 0.972 97.2296

The table above depicts that with different seed sizes the performance of the RF algorithm changes.

Accordingly, the best result was gained through the last Scenario (Scenario 2). The detailed

information of this Scenario is presented below.

100

Figure 5. 8 Summary of performance of Random Forest with seed size 100

5.7.5.1 The detailed information by class of Random Forest with seed size 100

Table 5. 14 The detailed information by class of Random Forest with seed size 100

Detailed information by class

 TP

Rate

FP Rate Precision Recall F-Measure Class

0.969 0.000 1.000 0.969 0.984 Non smelly

0.982 0.008 0.970 0.982 0.976 Feature Envy

0.979 0.009 0.973 0.979 0.976 Both

0.989 0.010 0.968 0.989 0.978 Long Method

Weighted Avg. 0.980 0.007 0.979 0.980 0.979

101

5.7.5.2 Confusion Matrix for Random Forest with seed size 100

Table 5. 15 Confusion Matrix for Random Forest with seed size 100

Confusion Matrix

A B C D Classified as

216 5 0 2 a = Non smelly

0 161 3 0 b = Feature Envy

0 0 183 4 c = Both

0 0 2 182 d = Long Method

The Random Forest with seed size 100 was able to classify 742 (216, 161, 183 and 182) instances

from Non smelly, Feature Envy, Both and Long Method classes respectively. The number of

instances that are incorrectly classified is 16. So, 97.8892 % of instances has been correctly

classified. The time taken to build the model is 0.18 sec.

5.8 Experimental Result Comparison

The table below presents the detailed and overall performance of each of the above algorithms in

terms of the metrics defined in the earlier chapter.

Table 5. 16 Summary of average performance of all the algorithms

 Performance Metrics

Classification

Algorithm

Correctly

classified

instances

Incorrectly

classified

instances

Time

taken

to build

the

model

TP

Rate

FP

Rate

Precision Recall F-

Measure

Accuracy

J48 730 28 0.14

sec

0.963 0.012 0.963 0.963 0.963 96.3061

%

Random

Forest

739 19 0.49

sec

0.975 0.008 0.975 0.975 0.975 97.4934

%

JRip 710 48 0.33

sec

0.937 0.022 0.937 0.937 0.937 93.6675

%

Naive Bayes 686 72 0.01

sec

0.905 0.031 0.907 0.905 0.905 90.5013

%

Random

Forest with

seed size 100

742 16 0.18

sec

0.979 0.007 0.979 0.979 0.979 97.8892

%

102

According to the above table, the algorithm Random Forest out performs the rest machine learning

techniques deployed by the study. With all default values of WEKA, from the table above, the

algorithm Random Forest shows a higher result in terms of all the performance measurement

metrics except for the time taken to build the model. The algorithm was able to detect 97.4934 %

of the instances under their real class label. The percentage of instances that are labeled mistakenly

as positive are 2.5066 % which is relatively lower than the other classifiers.

Additionally, the study has conducted another three scenarios under the second experiment to

further enhance the performance of the selected algorithm. This results in the improvement of

classification accuracy and the algorithm was able to gain higher result with different parameter.

The results are the one’s highlighted in bold. So, compared to the other classifiers, Random Forest

algorithm is well suited given the specific MCD dataset.

103

CHAPTER SIX

FINDINGS OF THE STUDY

This section describes the major findings discovered through the Systematic literature review

(SLR) and experimental work section. It also presents the experimental results of the reference

work and the original work. Accordingly, a comparison between the two works will be presented.

6.1 Findings of the Systematic Literature Review

This study has applied a systematic literature review with the aim of exploring the code smells

studied and the machine learning techniques deployed in the detection of code smells in recent

years. Hence, the systematic Literature Review carried out in this study was able answer the first

three research questions of the study. The result of the SLR is discussed as follows.

“Which code smells are most typically discovered using machine learning techniques?” was the

study's first research question. Following a thorough review of the literature, it was discovered that

the smells Long method, Feature envy, God class, and Data class are the code smells that have

been studied the most between 2017 and 2020. Specifically, the Long method and Feature envy

are the leading smells to be detected using ML techniques in recent years. Each of them was

detected by 11 papers out of the selected 16 papers. The others God class and Data class were

detected by 8 and 6 papers respectively. So, the answer to the first research question can be

summarized as follows.

Research Question 1: Which code smells are most commonly detected using machine learning

techniques?

Hence, the answer to the first research question of this study is, the code smells Long method,

Feature envy, God class and Data class are the most widely studied code smells in the studies from

2017-2020. Additionally, according to the code smell category, Bloaters, couplers and Dispensable

are the leading smell categories to be detected by the studies from 2017 to 2020.

104

The second research questions of this study were “Which machine learning techniques better

applicable to detect code smells?”. This study conducts a full literature analysis on publications

published between 2017 and 2020, in the same way as the first research question was answered.

The result of the SLR shows that Random Forest, Decision tree, Naïve Bayes and SVM are the

most widely used and the leading machine learning techniques in code smell detection. They were

detected by 9, 7, 6 and 5 papers respectively. So, the answer to the first research question can be

summarized as follows.

Research Question 2: Which machine learning techniques are most commonly used in the

detection of code smells?

Hence, the result shows that Random Forest, Decision tree, Naïve Bayes and SVM are the most

widely used machine learning techniques in code smell detection in the studies from 2017-2020.

Then the study further extends the analysis by merging the concepts of question 1 and 2 covered

in the SLR. Hence tried to assess the higher results (in terms of the widely used performance

measures) gained for the four most commonly studied smells in studies considering them.

Accordingly, the study was able to come with the following conclusions.

 Random Forest is the best machine learning technique in the detection of Long method

with a very promising result.

 Deep semantic based approach and MLP are the best learning technique in the detection of

Feature Envy.

 The machine learning techniques Random Forest and GBT are the best in the detection of

the class level code smell Data class.

 JRip and Deep semantic approach are the best in the detection of the class level code smell

God class.

Finally, the third and final research question to be addressed by this SLR part of the study is “What

datasets have been used for code smell detection?” The purpose of this topic was to learn more

about the different types of datasets that are utilized in code smell detection using machine learning

techniques. The major reason for this question was that the selection of dataset has a great influence

in the performance of a given ML technique. The study has categorized the datasets in to three

105

categories. These categories are Type of dataset used (name of the datasets), the nature of dataset

being used (open source (publicly available) or other projects datasets (Industrial) and Nature of

dataset (cross project or within project dataset). As a result, the SLR shows that most studies have

used an open-source projects to prepare their datasets. Thirteen out of fifteen papers excluding S8

(whose dataset is not explicitly mentioned) adopt an open-source projects. In addition, the result

was able to point out that the Qualitas corpus dataset is identified as the most widely used smells

dataset used by five papers. Additionally, all the fifteen papers that have explicitly mentioned their

datasets used a cross-project platform to build their dataset.

Research Question 3: What datasets have been used for code smell detection?

The datasets Qualities corpus containing java projects, Xerces (with different versions) and other

project datasets that are not explicitly mentioned are the most commonly used open-source

datasets for training the learning algorithms in code smell detection. Additionally, majority of

the studies have used an open-source dataset and almost all of them have used different projects

(cross- projects) to build their dataset.

6.2 Findings of the Experimental work

All the previous works mentioned in the literature review part of this study consider the application

of machine learning techniques for the detection of a single smell type. None of them have tried

to adopt more than one smell type in a single dataset. Except for the study that is undergone by

[66]. This study tries to address the issue by introducing the existence of more than one type of

code smell for a single instance. They have considered two most frequently studied method level

smells. Similarly, this study adopts those two method level datasets used by the reference work.

That is the reason why this work is used as a reference work for conducting a study in the same

topic.

6.2.1 Results of the reference Work

The reference work as described above, tried to address a new concept which is the adoption a

multi label dataset containing the existence of more than one smell type. This study has applied

five machine learning techniques on the MLD. The ML techniques used in the reference work and

their performance result is summarized as follows: -

106

Table 6. 1 Result of the Reference work

No ML techniques Performance in Accuracy

1 J48 pruned 96.7 %

2 Random Forest 96.7 %

3 B-J48 pruned 97.5 %

4 B-J48 Unpruned 97.2 %

5 B- Random Forest 96.7 %

The researchers have applied tree-based classifiers and were able to get a promising result in which

most of them have performed above 95 %. The greatest result (97.5 %) was gained by the B-J48

pruned algorithm. Implying that tree-based classifiers are suitable for the MLD in the same way

they work for the single labeled dataset containing single smell type.

6.2.2 Results of the original Work

Similar to the reference work, this study has tried to create a replicable experiment recreating the

most commonly applied machine learning techniques applied for the detection of the two selected

code smells. These techniques were applied to the multi-class dataset containing the smells that

are addressed by the reference work. The techniques applied on the MCD were J48, Random

Forest, JRip and Naïve Bayes. These techniques are the most widely used techniques in the

detection of code smells according to the SLR result. Additionally, they are selected for a reason

that the study believes those techniques are well suited for multi class dataset. The performance of

the ML techniques used in the original study is presented as follows:-

Table 6. 2 Results of the Original work

No Classification Algorithm Accuracy

1 J48 96.3061 %

2 Random Forest 97.4934 %

3 JRip 93.6675 %

4 Naive Bayes 90.5.13 %

107

As a result, most of the applied techniques (common one) performed nearly the same result as the

experiments on the reference work. They have scored above 95% of Accuracy. The greatest result

in this study, (97.4934 %) was gained by the RF algorithm. This study then further enhances the

performance of the best performing ML technique by adjusting the parameter “seed size” to

different values. As a result, was able to get a result (97.8892 %) that is even higher than that

gained with the default parameter of the classifier.

6.2.3 Comparison of Results of the Reference and Original Work

The table below shows the experimental comparison between the reference work and this study.

But, to maintain the consistency, the study considers algorithms that are used in both studies which

are J48 and Random Forest. Additionally, the reference work has used the metrics Accuracy,

Hamming Loss and Exact Match Ratio to measure the performance of algorithms. On the other

side, this study applies other metrics along with the one common metric “Accuracy”. So, the

comparison is made using Accuracy. The table presents the performance of the considered

machine learning techniques in the reference and original work in terms of Accuracy which is

common for both studies.

Table 6. 3 Accuracy comparison of common metrics used in both studies

No Studies ML techniques Performance in terms of

Accuracy

1 Original Work J48 96.3061 %

Random Forest 97.4934 %

Random Forest (with parameter

modification)

97.8892 %

2 Reference Work J48 96.7 %

Random Forest 96.7 %

The table shows that with the common ML techniques used, the RF algorithm was able to get a

higher result in this specific dataset (MCD). But, the J48 performs better in the reference work

(MLD). In terms of the best results of the two studies, the researcher in the reference work was

able to get a best result with the B-J48 pruned and B-J48 unpruned algorithm. The performance of

these algorithm in terms of accuracy were 97.5 % and 97.2 % respectively. But this work was able

to get the best result with the RF algorithm. Accuracy rate of this algorithm was 97.8892% which

is better than the best result gained by B-J48 pruned (97.5) of the reference work.

108

From the experimental result, it can be concluded that the tree based and rule-based classifiers are

suitable for this specific dataset and performed a good classification of the instances in the same

way they did in the reference work. In addition, Random Forest is best performing algorithm for

the Multi Class Dataset compared to the other ML techniques applied.

The fourth research question of this study is, What result achieved after developing and evaluating

the performance of the proposed machine learning model that would be used for detection of code

smells?. Hence, the answer is presented as follows.

Research Question 4: What result achieved after developing and evaluating the performance

of the proposed machine learning model that would be used for detection of code smells?

The study used a Multi Class Dataset which is believed to be more representative of the real-

world scenario. Hence, according to the experiments undertaken, most of the ML algorithms

applied perform a promising result. Especially, the machine learning algorithm random forest

was able to give higher result with respect to most of the performance measurement metrics

used. Compared to the reference work, the common algorithms show approximately the same

results. But this study shows a higher result with random forest (97.8892%) compared to the

best result gained in the reference work with B-J48 pruned (97.5%).

Even if Naïve Bayes (NB) works well for high dimensional data [111] , it performs less in this

study compared to the other ML techniques. According to [111] in order for NB to perform well

it requires a large number of records and the dataset used by this study is very small in size.

Additionally, according to [112], NB algorithm performs better for categorical type of data than

the numerical ones. The dataset used in this study is composed of numerical data. So, this nature

of the dataset influences the performance result of the NB algorithm.

Random forest performs best in this is study. This is because according to [79] , random forest

algorithm works well for high dimensional and small datasets.

6.3 Threats to conclusion validity

There are some concepts that might influence the generalizability of the findings in both the SLR

and Experimental work.

109

The papers in the SLR use different projects to assess their results and even the studies that use the

same project use different annotations to train the data, decreasing the reliability of the

comparisons of performance. Additionally, with respect to the generalizability of the findings, this

study used two code smell datasets which are constructed from 74 open-source Java projects for

experimentation. However, it’s hard to conclude that the results can be generalized to other coding

languages and industrial practice. So, future replications of this study are necessary to confirm the

generalizability of the findings.

6.4 Contribution of the original work

Different researches were undergone in the detection of code smells using machine learning

algorithms. Even if all those works have tried to fill gaps in this area, this study was able to notice

spaces of improvement. The basic gaps addressed by this study are:

 Giving insight on the application of machine learning techniques in the detection of code

smells by performing a through SLR. With this, future researchers will have an initial

understanding on the code smells detected and machine learning techniques deployed to

detect them in recent years.

 The representation of more than one smell in a single dataset by introducing a Multi class

dataset containing two code smells which is a more realistic than the binary datasets

adopted by previous works.

 A balanced proportion of class labels which is one of the problems in most of the smell’s

dataset due to the fact that they are composed of an unrealistically unbalanced proportion

between the smelly and non-smelly instances.

 An impure dataset containing an irrelevant feature, which do not have importance rather

than increasing the complexity. Those attributes were taken into consideration by the

previous researchers even when they know their significance is low.

 The performance of algorithms in a multi label dataset will suffer from the specific problem

transformation method adopted as indicated by the reference work. In order to alleviate

this problem, the study has followed the idea of merging the dataset in a better way. This

way the study believes label chaining (multi class problem transformation) considers the

label correlation effectively than the binary relevance method.

110

So, this study has tried to fill the gaps of all the literatures reviewed. Hence, tried to come up with

a more realistic model to rely on.

111

CHAPTER SEVEN

CONCLUSION AND RECOMMENDATION

7.1 Conclusion

In this research, an attempt has been made to perform SLR and apply ML techniques for the

detection of method level code smells. This study has tried to systematically review studies

undergone on the same topic to identify the most commonly studied smells and the most widely

used ML techniques in the detection of code smells. It also tried to create a replicable experiment

recreating the most widely used and best performing machine learning techniques applied for code

smells identification on two selected smells. This study's key contribution can be summarized as

follows.

 This study has undergone the Systematic Literature Review in more recent papers from

2017 to recent year 2020. Hence, was able to detect which smells and ML techniques have

been given attention recently. Additionally, it was able to point out the nature of the

datasets being used by these studies.

 This paper has adopted two datasets from other researcher and merged those datasets in

order to form a more realistic dataset that represent real use case scenario. Implying that a

given instance can be affected by more than one smell type.

 The study has tried to discriminate the attributes according to their information gain value.

Hence, the classification task is conducted according to the contribution of the attributes in

detecting the final class.

 There is a data imbalance problem in most smell datasets. Similarly, the dataset used by

this study suffers from an imbalanced proportion among the classes. To alleviate this data

imbalance problem, different scholars have proposed a set of balancing techniques (over

and under sampling). This study uses one of the most commonly applied balancing

technique which is SMOTE. Finally, the experimental work then was conducted on a more

balanced environment.

In general, the results from this study are very promising. Most of the applied classifiers have

performed best with respect to most of the performance metrics applied. Especially the tree and

rule-based classifiers show a higher result the same way they performed in the reference work.

112

The study has also shown that it is possible to identify more than one smell and the algorithms

used for a multi class smell datasets have relatively the same performance with the ones with single

class dataset.

7.2 Recommendation

7.2.1 Recommendation for Practical use of ML techniques in smells detection

Application of Machine Learning techniques in the area of code smell detection is a very recent

trend according to different literatures. Hence, many researchers now a days are focusing on

addressing the open issues in this area. As a result, a continuous work is being done and a

promising result is being achieved. But this detection mechanism should be applied for real use

case scenario. Software developers should give attention on addressing code smells and apply this

new trend in the examination of the quality of their code in the ongoing process of development.

So that they can decide on the appropriate refactoring method to be used if a smell exists. By doing

so, they can guarantee a software product that is of high quality and open/easy to extend/improve.

This way they can reduce poor quality software systems.

7.2.2 Recommendation for Future Work

The proposed approach tried to cover some gaps in the previous studies by introducing the

detection of two code smells Long Method and Feature Envy. But, still there is a plenty of room

for improvement. Other researchers can improve this work in the following ways.

 The dataset used by the study is quite small in size. Hence, the representativeness of the

dataset is low. The experimental results and conclusions can benefit from a considerably

large amount of data. So, other researchers can use a dataset that is richer in size.

 Additionally, this study has introduced the detection of two code smells in a single instance.

But, an instance of a similar method may be affected by code smells other than those

specified by the study. So, future studies may consider the existence of multiple smell types

in a single instance by introducing other techniques to handle them.

 This study has applied four ML techniques. But, according to the works of previous studies

there are a number of techniques that can be used in the detection of code smells. So, future

studies should incorporate the application of different ML techniques and check if other

techniques can handle the problem better.

113

 The other improvement area can be the application of ML techniques for the detection of

class level code smells. This study has considered the detection of method level smells

only. Other studies can replicate the study for the detection of class level smells.

 Future studies may also consider the application of hybrid approach like an integration of

clustering and knowledge-based approach to explore the possibility of multiple code smells

in a single Dataset.

114

APPENDIX I Total number of papers retrieved from ACM digital library

APPENDIX II Total number of papers retrieved from IEEE digital library

115

APPENDIX III Total number of papers retrieved from Springer digital

library

APPENDIX IV Questioner form to accomplish the Quality assessment task.

Dear Respondents please fill the form properly. Put X mark in the Yes, Partial or No alternatives

under each question. Here are the contents of each questions read them properly and put the

mark accordingly.

Question 1 Is the dataset being used by the researcher mentioned clearly?

Question 2 Is the machine learning classifier used clearly defined?

Question 3 Are the code smells detected by the proposed technique clearly defined?

116

No Author of the paper Question 1 Question 2 Question 3

Yes Partial No Yes Partial No Yes Partial No

1 Mhawish, M.Y. et al., 2020 [89]

2 Guggulothu, T. et al., 2020 [66]

3 Cruz, D. et al., 2020 [90]

4 Pecorelli, F. et al., 2019 [91]

5 Luiz, F.C., 2019 [49]

6 Rubin, J. et al., 2019 [92]

7 Oliveira, D. et al., 2020 [93]

8 Liu, H. et al., 2019 [94]

9 Azadi, U. et al., 2018 [95]

10 Guo, X. et al., 2019 [96]

11 Pecorelli, F. et al., 2019 [97]

12 Kaur, A. et al., 2017 [98]

13 Gupta, H. et al., 2019 [99]

14 Karađuzović-Hadžiabdić, K. et

al., 2018 [100]

15 Das, A.K. et al., 2019 [101]

16 Kiyak, E.O. et al., 2019 [102]

17 Singh, R. et al., 2020 [103]

18 Di Nucci, D. et al., 2018 [86]

19 Jesoudoss, A. et al., 2019 [104]

20 Yang, Y. et al., 2018 [105]

21 Thongkum, P. et al., 2020 [106]

22 Chen, D. et al., 2019 [107]

117

APPENDIX V Design Metrics Definition and their Computation Details

1. Lines of Codes (LOC):- An operation's or a class's total amount of lines of code, including

all blank lines and comments. LOC of a method is calculated by counting the LOC from

the method signature to the last curly bracket. The value for this metric becomes worse for

greater value.

2. Lines of Codes without Accessor or Mutator Methods (LOCNAMM):- A class's total

amount of lines of code, including blank lines and comments, but excluding accessor and

mutator methods and their related comments. A method's LOCNAMM is determined by

counting the number of LOCs from the class declaration to the last curly bracket. For

higher numbers, the metric's value deteriorates [66].

3. Number of Packages (NOPK):- A system's total number of packages.

4. Number of Classes (NOCS):- A system's, a package's, or a class's total number of classes.

5. Number of Methods (NOM):- The number of methods declared locally in a class,

including both public and private methods, is represented by NOM. Methods that have

been overridden are ignored. The number of methods declared in class is added together

to get the NOM of a method for a class. The NOM of a method for package method is

calculated by adding the NOMs of all the classes in the package. The NOM of a project

method is calculated by adding the NOMs of all the packages in the project [86] [22].

6. Number of Not Accessor or Mutator Methods (NOMNAMM):- NOMNAMM is the

number of methods declared locally in a class, including both public and private methods

but excluding accessor and mutator methods. The number of non-accessor or mutator

methods declared in a class is added together to get NOMNAMM. The NOMNAMM for

a package is determined by adding the NOMNAMM for all of the classes in the package.

The NOMNAMM for a project is computed by adding the NOMNAMM for all of the

project's packages [66].

7. Number of Attributes (NOA):- A class's number of attributes.

8. Cyclomatic Complexity (CYCLO):- The greatest number of directly unrestricted

pathways in a method is known as cyclomatic complexity. The path is linear when the

relevant code's execution flow does not branch. This metric indicates how complex the

code is, which has an impact on maintenance and modularization efforts. Because it's

118

difficult to understand, code with a lot of "break", "continue", "goto", or "return" clauses

is tough to simplify and divide into simpler functions [66]. The precise Cyclomatic

Complexity has been computed in the dataset used. The Cyclomatic Complexity adds 1 to

the complexity for each occurrence of "logical conjunction" and "logical and in conditional

expressions." i.e., the statement if (a && b || c) would have a Cyclomatic Complexity of

one but the strict Cyclomatic Complexity of the expression will be three. The minimum

Cyclomatic Complexity is one [66]. The value for this metric becomes worse for greater

values.

9. Weighted Methods Count (WMC):- The total complexity of the methods defined in the

class is WMC. WMC is computed with the Cyclomatic Complexity metric (CYCLO) [22].

10. Weighted Methods Count of Not Accessor or Mutator Methods (WMCNAMM):-

WMCNAMM is the sum of the complexity of the class's methods, which are not accessor

or mutator methods. The WMCNAMM, like the WMC, is calculated using the Cyclomatic

Complexity metric (CYCLO).

11. Average Methods Weight (AMW):- The average static complexity of a class's methods

[86]. The Cyclomatic Complexity (CYCLO) measure is used to calculate AMW

complexity. According to [66], AMW can be calculated with the formula:-

 f(x) = { AMW =
WMC

NOM
 where 𝑁𝑂𝑀 ≠ 0

12. Average Methods Weight of Not Accessor or Mutator Methods (AMWNAMM):- The

average static complexity of a class's non-accessor and mutator methods is referred to as

AAN. The Cyclomatic Complexity measure is used to calculate AMWNAMM complexity

(CYCLO). According to the researcher at [66], AMWNAMM can be calculated with the

formula:-

 f(x) = {AMWNAMM =
WMCNAMM

NOMNAMM
 where 𝑁𝑂𝑀𝑁𝐴𝑀𝑀 ≠ 0

13. Maximum Nesting Level (MAXNESTING):- The maximum number of control

structures that can be nestled within a single operation [66]. For higher values, the metric's

value deteriorates.

119

14. Weight of Class (WOC):- The number of in-service public methods divided by the total

number of public members. This metric measures the weight of functionalities offered by

a class through its public interface.

Number of Non Abstract Public Non Accessor or Mutator Methods

Total Number of Public Methods and Attributes.

15. Called Local Not Accessor or Mutator Methods (CLNAMM):- The total number of

called non accessor or mutator methods in the same class as the measured method. It's

calculated by adding up the number of Intra Methods that aren't accessors or mutators.

16. Number of Parameters (NOP):- A method's number of arguments. The more parameters

there are, the more difficult it is to grasp the method signature. As a result, the value of

this metric becomes worse as the amount increases.

17. Number of Accessed Variables (NOAV):- The total number of variables from the

observed operation that were accessed directly or via accessor methods. Parameters, local

variables, as well as instance variables and global variables stated in system classes, are

among these variables. The Used Variables defined within the system, not in external

libraries, are counted in the dataset. The list of Called Methods was used to count the

variables accessible through accessor methods, and then the Used Intra Variables by each

accessor method in the set of Called Methods were counted. For higher numbers, the

metric's value worsens.

18. Access to Local Data (ATLD):- The number of attributes declared by the current classes

accessed directly or via accessor methods by the measured method. It's obtained by adding

up the number of Used Intra Variables defined within the system rather than in external

libraries. The list of Called Intra Methods was utilized to count the variables accessed

using accessor methods, and then the Used Intra Variables by each accessor method in the

set of Called Methods were counted. For higher values, the metric's value deteriorates.

19. Number of Local Variable (NOLV):- Is the number of declared local variables in a

method. A method's parameters are referred to as local variables [86].

20. Tight Class Cohesion (TCC):- TCC is the normalized ratio of the total number of possible

connections between methods to the number of methods directly associated with other

methods through an instance variable. When two methods access the same instance

120

variable directly or indirectly through a method call, they have a direct link. TCC has a

value between 0 and 1. According to the researcher at [66], given N, where N is the number

of visible methods, NP is calculated by the formula

 N𝑃 = 𝑁 ∗ (𝑁 − 1) 2

The other Number of direct connections NDC, computed using a connectivity matrix that records

all direct connected methods, making attention to cyclic calls among methods. Then TCC is

calculated by the formula below.

 TCC =
NDC

NP
 where NP ≠ 0

TCC only considers visible methods, which aren't private, don't implement an interface, or handle

an event. Constructors aren't taken into account. Because of the divergent links with attributes,

constructors are a difficulty. They boost cohesiveness, by creating diverging relationships between

techniques that employ distinct properties, which isn't true [22].

21. Lack of Cohesion in Methods (LCOM5):- LCOM5 is calculated by the following

formula

NOM −
∑ mϵM NOAcc(m)

𝑁𝑂𝐴
𝑁𝑂𝑀 − 1

Where M is the set of methods of the class, NOM the number of methods, NOA, the number of

attributes and NOAcc(m) is the number of attributes of the class accessed by method m. The value

for this metric becomes worse for lower values.

22. FANOUT: - Number of classes that have been called. It's calculated by adding up all of

the system's Called Classes. For higher numbers, the metric's value deteriorates.

23. Access to Foreign Data (ATFD):- The number of attributes accessible directly or by

invoking accessor methods or methods from unrelated classes in the system. First, the

Used Inter Variables belonging to the system, also through not Constructor, Public, and

not Abstract Called Inter Methods of the system were summed up. For class, the Used

Inter Variable belonging to the system, also through not Constructor, Public and not

121

Abstract Called Inter Methods from the field declaration class of the methods and from all

the not Constructor and not Abstract Methods Declared in Class were summed up [22].

For higher numbers, the metric's value deteriorates.

24. Foreign Data Providers (FDP):- The number of classes that specify the attributes that are

accessible in accordance with the ATFD metric. It's calculated by adding up all the classes

that have foreign data declared, and only counting each class once. [66]. For higher

numbers, the metric's value deteriorates.

25. Response for a Class (RFC):- The size of a class's response set is measured using RFC.

“All methods that can be invoked in response to a message to an object of the class” are

included in a class's response set. It comprises both native and inherited methods, as well

as methods from other classes. This statistic shows the complexity of the class as well as

the amount of communication it has with other classes. The complexity of a class increases

as the number of methods that can be triggered from it via messages grows [22]. It is

computed by adding the Inherited Methods by the Called Inter Methods and Called

Hierarchy Methods, counting each method only once. Only call to classes belonging to the

system [66]. For higher numbers, the metric's value deteriorates.

26. Coupling Between Objects classes (CBO):- Two classes are tied if one of them calls or

accesses a method or an attribute of the other, i.e., one class calls or accesses another class's

method or attribute. The use of inheritance and polymorphically called methods in

couplings is considered. The number of classes to which a class is related is referred to as

its CBO. It's calculated by adding all of the system's unrelated classes that define the Used

Inter Variables, Used Hierarchy Variables, Used Inter Types, Used Hierarchy Types,

Called Inter Methods, and Called Hierarchy Methods by the measured class and its

Ancestor Classes, as well as the methods the measured class methods declare and inherit.

For higher numbers, the metric's value degrades.

27. Called Foreign Not Accessor or Mutator Methods (CFNAMM):- is the number of

called not accessor or mutator methods declared in unrelated classes respect to the one that

declares the measured method. Only calls to classes belonging to the system were

considered when calculating the number of called not accessor or mutator methods

declared in unrelated classes in relation to the measured one. The number of non-accessor

122

or mutator Called Inter Methods and Called Hierarchy Methods in the system is added up.

The call to class's default constructor is not counted [66].

28. Coupling Intensity (CINT):- The number of unique operations called by the measured

operation is denoted by CINT. Called Inter Methods corresponding to system classes are

added together to calculate it [66]. For higher numbers, the metric's value continues to

deteriorate.

29. Coupling Dispersion (CDISP):- The number of classes in which the operations called

from the measured operation are defined, divided by CINT. For higher numbers, the

metric's value worsens.

 CDISP =
FANOUT

CINT
 where CINT ≠ 0

30. Maximum Message Chain Length (MaMCL):- is the maximum number of chained calls

for a method. The value for this metric becomes worse for greater values.

31. Number of Message Chain Statements (NMCS):- is a method's number of independent

chained calls. For higher numbers, the metric's value degrades.

32. Mean Message Chain Length (MeMCL):- is the average length of a method's linked

calls. In Message Chains Info, the rounded average length of a chain has been calculated.

If NMCS is zero, then MeMCL is zero too. The value for this metric becomes worse for

greater values.

33. Changing Classes (CC):- is the number of classes that define the methods that call the

measured method. The total number of Calling Classes was calculated. For higher

numbers, the metric's value declines.

34. Changing Methods (CM):- The total number of methods that call the measured method.

The number of Calling Methods were summed up. For higher numbers, the metric's value

deteriorates.

35. Number of Accessor Methods (NOAM):- A class's number of accessor (getter and setter)

methods. The total number of getter and setter methods specified in Class was added

together.

36. Number of Public Attributes (NOPA):- A class's total amount of public attributes. For

higher numbers, the metric's value deteriorates.

37. Locality of Attribute Accesses (LAA):- The number of attributes from the method’s

definition class, divided by the total number of variables accessed (including attributes

123

used via accessor methods), where the number of local attributes accessed is computed in

accordance with the ATLD standards. Variables specified in system classes were the only

ones taken into account. Each attribute is only counted once, regardless of how the class

accesses it (directly or through an accessor and/or mutator) or how many times it is

accessed. For lower values, the metric's value deteriorates.

38. Depth of Inheritance Tree (DIT):- The depth of a class, measured by DIT, within the

inheritance hierarchy is the maximum distance between the class node and the tree's root,

as determined by the number of ancestor classes. For classes without ancestors, DIT has a

minimum value of one. The deeper in the hierarchy a class is, the more methods it will

inherit, making it more difficult to predict its behavior [11]. Only the system's hierarchy

classes were taken into account. In fact, the Ancestor Classes were visited in order from

the bottom up, with the counter stopping at the first class that did not belong to the system

[11]. The value for this metric becomes worse for greater values.

39. Number of Interfaces (NOI):- The number of declared interfaces in a package or system.

The Interface Declared Classes have been added up.

40. Number of Children (NOC):- The number of children in a class hierarchy is the number

of immediate subclasses that are subordinated to that class. The Children Classes were

summed up. For higher numbers, the metric's value degrades.

41. Number of Methods Overridden (NMO):- The number of overridden methods is

represented by NMO, i.e., the class declares the superclass, and the superclass redefines

the class. This criterion applies to methods that call their parent method several times. For

classes that don't have a superclass, NMO isn't specified. The Overridden Methods have

been enumerated. For lower values, the metric's value deteriorates.

42. Number of Inherited Methods (NIM):- NIM is an easy metric that indicates how much

behavior a certain class can reuse. It keeps track of how many methods a class can call

from its super classes. For classes that don't have a superclass, NIM isn't defined. For

higher numbers, the metric's value worsens.

43. Number of Implemented Interfaces (NOII):- The number of interfaces that a class has

implemented. It's calculated by adding all of the implemented interfaces together.

124

APPENDIX VI Additional Metrics used in the dataset

Here is the definition of some major keywords that is necessary prior to the definition of the listed

additional metrics.

 An Abstract method is one that has no body (no implementation). A method must always

be defined in an abstract class, or, to put it another way, if a class has an abstract method,

the class must also be declared abstract.

 Final method is a method that cannot be overridden by subclasses.

 Static method is also called static function. It is a member of an object that may be

accessed directly from the constructor of an API (Application Program Interface) object

rather than from an object instance produced via the constructor. Any static member of a

class can be accessed without requiring a reference to any object in the class.

 Protected indicates that a data member and method are only accessible by the classes of

the same package and the subclasses present in any package.

 Private are those methods and members which can't be accessed in other class except the

class in which they are declared. Only the class in which they are declared can perform this

functionality. That is, the member or method is only visible within the class, not from any

other class (including subclasses). Private members are visible to nested classes as well.

 Default Constructor In the absence of any programmer-defined constructors, the word

default constructor refers to a constructor that is automatically created by the compiler and

is usually a null constructor. A default constructor is one that either has no parameters or

contains default values for all of the parameters if it does have parameters. The compiler

offers an implicit generic parameterless constructor if no user-defined constructor for class

A exists and one is required. If a class's constructors are all non-default, the compiler will

not define a default constructor implicitly, resulting in a class with no default constructor.

1. Not Default Constructor These are user defined constructors.

2. number_not_abstract_not_final_methods:- is the number of methods that are neither

abstract nor final. In other words it refers to the number of methods that can implement

some function and at the same time they can be overridden.

3. number_private_visibility_attributes: is the number of attributes that have a private

visibility and can not be accessed in other classes.

125

4. number_not_final_not_static_methods:- is the total number of methods that are neither

final nor static one. These are methods that can be overridden and can be accessed a

reference to any object in the class.

5. num_final_attributes:- is the total number of attributes that can be overridden.

6. number_private_visibility_methods:- is the total number of methods that have a private

visibility and can not be accessed in other classes.

7. num_static_attributes:- is the total number of attributes that belong to the static class.

8. num_final_static_attributes:- is the total number of attributes that belong to final and

static class.

9. num_not_final_not_static_attributes:- is the total number of attributes that are neither

final class nor static.

10. num_final_not_static_attributes:- is the total number of attributes that are final but not

static.

11. number_protected_visibility_methods:- refers to the total number of methods that are

protected and can not be directly accessed by other classes.

12. number_static_methods:- is the total number of methods that can be directly accessed

from the constructor of API object.

13. number_package_visibility_methods:- is the total number of methods that are visible to

the package containing them.

14. number_package_visibility_attributes:- is the total number of attributes that are visible

to the package they are contained in.

15. is_static_methods:- specifies whether a given method is directly accessible from the

constructor of API.

16. is_static_type:- refers to the class being static. It specifies whether a given class is

accessible directly from the constructor of API.

17. number_not_final_static_methods:- refers to the total number of methods that are not

final (can be overridden) at the same time can be accessed directly through an object of

API constructor.

18. number_constructor_Defaultconstructor_methods:- is the total number of methods that

are default constructors and are not user defined one.

126

19. number_final_static_methods:- refers to the total number of methods that are final (can

not be overridden) and can be accessed directly through an object of API constructor.

20. number_final_not_static_methods:- refers to the total number of methods that are final

(can not be overridden) and those methods can not be accessed directly without the

requirement of the instance of an object created through the API constructor.

21. number_abstract_methods:- Is the number of methods that are abstract (methods without

any implementation).

22. number_constructor_NotDefaultconstructor_methods:- is the total number of methods

that are not default constructors and are defined by the user.

23. number_static_not_final_attributes:- the total number of attributes that are static but not

final.

24. number_public_visibility_methods:- refers to the total number of methods whose

visibility is public and can be accessed publicly.

25. number_standard_design_methods:- is the total number of methods intended for

duplication or repetitive manufacture.

26. number_final_methods:- is the total number of methods that can not be overridden by

their subclass.

27. number_protected_visibility_attributes:- refers to the total number of attributes that are

protected and their access is restricted to the class they belong to.

127

APPENDIX VII SMOTE stages

128

References

[1] M. Lehman, "Programs, life cycles, and laws of software evolution," in Proceedings of the

IEEE, 1980.

[2] D. Parnas, "Software aging," in Proceedings of 16th International Conference on Software

Engineering, 1994.

[3] Tamburri, D.A., Palomba, F., Serebrenik, A. and Zaidman, A., "Discovering community

patterns in open-source: a systematic approach and its evaluation," Empirical Software

Engineering, vol. 3, pp. 1369-1417, 2019.

[4] Avgeriou, P., Kruchten, P., Ozkaya, I. and Seaman, C., "Managing technical debt in

software engineering," vol. 6(4), 2016.

[5] W. Cunningham, "The WyCash portfolio management system. ACM SIGPLAN OOPS

Messenger," 1992, pp. 29-30.

[6] Kruchten, P., Nord, R.L. and Ozkaya, I., "Technical debt: From metaphor to theory and

practice," Ieee software, vol. 29(6), pp. 18-21, 2012.

[7] Seaman, C. and Guo, Y., "Measuring and monitoring technical debt. In Advances in

Computers," Elsevier, vol. 82, pp. 25-46, 2011.

[8] Fowler, M., Beck, K., Brant, J., Opdyke, W. and Roberts, D., "Refactoring: Improving the

Design of Existing Code Addison-Wesley Professional," Berkeley,, CA, USA., 1999.

[9] Güzel, A. and Aktas, Ö., "A survey on bad smells in codes and usage of algorithm analysis,"

International Journal of Computer Science and Software Engineering, vol. 5(6), p. 114,

2016.

[10] Danphitsanuphan, P. and Suwantada, "Code smell detecting tool and code smell-structure

bug relationship," in 2012 Spring Congress on Engineering and Technology, 2012.

[11] Fontana, F.A., Braione, P. and Zanoni, M, "Automatic detection of bad smells in code: An

experimental assessment," vol. 11(2), pp. 1-5, 2012.

[12] Maneerat, N. and Muenchaisri, P., "Bad-smell prediction from software design model using

machine learning techniques," in Eighth international joint conference on computer science

and software engineering, 2011.

[13] Khomh, F., Vaucher, S., Guéhéneuc, Y.G. and Sahraoui, H., "A bayesian approach for the

detection of code and design smells," in Ninth International Conference on Quality

Software, 2009.

129

[14] Banker, R.D., Datar, S.M., Kemerer, C.F. and Zweig, D., vol. 36(11), pp. 81-95, 1993.

[15] Marticorena, R., López, C. and Crespo, Y., "Extending a taxonomy of bad code smells with

metrics," in International Workshop on Object-Oriented Reengineering, 2006.

[16] T. a. T. T. Mens, "A survey of software refactoring.," IEEE Transactions on software

engineering, vol. 30(2), pp. 126-139, 2004.

[17] Tufano, M., Palomba, F., Bavota, G., Oliveto, R., Di Penta, M., De Lucia, A. and

Poshyvanyk, D, "When and why your code starts to smell bad," in International Conference

on Software Engineering, 2015.

[18] Kessentini, W., Kessentini, M., Sahraoui, H., Bechikh, S. and Ouni, A., "A cooperative

parallel search-based software engineering approach for code-smells detection," IEEE

Transactions on Software Engineering, vol. 40(9), pp. 841-861, 2014.

[19] Olbrich, S., Cruzes, D.S., Basili, V. and Zazworka, N., "The evolution and impact of code

smells: A case study of two open source systems. What are code smells?," In proceedings

of the 2009 3rd international symposium on empirical software engineering and

measurement, pp. 390-400, 2009.

[20] E. P. C. a. B. A. P. Murphy-hill, "How We Refactor, and How We Know It.," IEEE

Transactions on Software Engineering, vol. 38(1), p. 55–57, 2012.

[21] Bryton, S. and e Abreu, F.B., "Strengthening refactoring: Towards software evolution with

quantitative and experimental grounds," in In 2009 Fourth International Conference on

Software Engineering Advances, 2009.

[22] Fontana, F.A., Mäntylä, M.V., Zanoni, M. and Marino, A., "Comparing and experimenting

machine learning techniques for code smell detection," in Empirical Software Engineering,

2016, pp. 1143-1191.

[23] Fokaefs, M., Tsantalis, N. and Chatzigeorgiou, A., "Identification and removal of feature

envy bad smells," in International conference on software maintenance, 2007.

[24] M. V. J. a. L. C. Mantyla, "Bad smells-humans as code critics," in International Conference

on Software Maintenance, 2004.

[25] Rasool, G. and Arshad, Z., "A review of code smell mining techniques," Journal of

software: Evolution and process, vol. 27(11), pp. 867-895, 2015.

[26] Bryton, S., e Abreu, F.B. and Monteiro, M., "Reducing subjectivity in code smells

detection: Experimenting with the long method.," in International Conference on the

Quality of Information and Communications Technology, 2010.

130

[27] S. H. R. M. H. H. B. S. a. D. M. Counsell, "Is a strategy for code smell assessment long

overdue?," in In Proceedings of the 2010 ICSE Workshop on Emerging Trends in Software

Metrics, Cape Town, South Africa., 2010.

[28] R. Marinescu, "Metrics-based rules for detecting design flaws," in International

Conference on Software Maintenance, chigao, Illinoiss, USA, 2004.

[29] Moha, N., Guéhéneuc, Y.G., Duchien, L. and Le Meur, A.F., "DECOR: A method for the

specification and detection of code and design smells," IEEE Transactions on Software

Engineering, vol. 36(1), pp. 20-36, 2010.

[30] V. M. A. a. F. F. A. Ferme, "Is it a Real Code Smell to be Removed or not?," in International

Workshop on Refactoring & Testing (RefTest), Wien, Austria., 2013.

[31] Bavota, G., Oliveto, R., Gethers, M., Poshyvanyk, D. and De Lucia, "Recommending move

method refactorings via relational topic models," vol. 40(7), pp. 671-694, 2013.

[32] Morales, R., Soh, Z., Khomh, F., Antoniol, G. and Chicano, F., "On the use of developers’

context for automatic refactoring of software anti-patterns," Journal of systems and

software, vol. 128, pp. 235-251, 2017.

[33] Panichella, A., Oliveto, R. and De Lucia, A., "Cross-project defect prediction models:

L'union fait la force," in Software Evolution Week-IEEE Conference on Software

Maintenance, Reengineering, and Reverse Engineering, 2014.

[34] Zimmermann, T., Nagappan, N., Gall, H., Giger, E. and Murphy, B., "Cross-project defect

prediction: a large scale experiment on data vs. domain vs. process," in European software

engineering conference and the ACM SIGSOFT symposium on The foundations of software

engineering, 2009.

[35] Abbes, M., Khomh, F., Gueheneuc, Y.G. and Antoniol, G., "An empirical study of the

impact of two antipatterns, blob and spaghetti code, on program comprehension.," in

European conference on software maintenance and reengineering, 2011.

[36] Khomh, F., Di Penta, M., Guéhéneuc, Y.G. and Antoniol, G., "An exploratory study of the

impact of antipatterns on class change-and fault-proneness," Empirical Software

Engineering, vol. 17(3), pp. 243-275, 2012.

[37] Pascarella, L., Palomba, F. and Bacchelli, A., "Fine-grained just-in-time defect prediction,"

Journal of Systems and Software, pp. 22-36, 2019.

[38] Sjøberg, D.I., Yamashita, A., Anda, B.C., Mockus, A. and Dybå, T., "Quantifying the effect

of code smells on maintenance effort," IEEE Transactions on Software Engineering, vol.

39(8), pp. 1144-1156, 2012.

131

[39] Fernandes, E., Oliveira, J., Vale, G., Paiva, T. and Figueiredo, E., "A review-based

comparative study of bad smell detection tools," in 20th International Conference on

Evaluation and Assessment in Software Engineering, 2016.

[40] Zhang, M., Hall, T. and Baddoo, N., 2011, "Code bad smells: a review of current

knowledge," in Journal of Software Maintenance and Evolution: research and practice,

2011.

[41] Fontana, F.A., Dietrich, J., Walter, B., Yamashita, A. and Zanoni, M, "Antipattern and code

smell false positives: Preliminary conceptualization and classification," in international

conference on software analysis, evolution, and reengineering (SANER).

[42] Mäntylä, M.V. and Lassenius, C., "Subjective evaluation of software evolvability using

code smells," Empirical Software Engineering, vol. 11(3), pp. 395-431, 2006.

[43] J. L. S. L. Z. H. Y. a. H. C. Wen, "Systematic literature review of machine learning based

software development effort estimation models," Information and Software Technology,

vol. 54(1), p. 41–59, 2012.

[44] Kotsiantis, S.B., Zaharakis, I. and Pintelas, P., "Supervised machine learning: A review of

classification techniques," in Emerging artificial intelligence applications in computer

engineering, 2007.

[45] R. Marinescu, "Detection strategies: Metrics-based rules for detecting design flaws," in

International Conference on Software Maintenance, 2004.

[46] M. Munro, "Product metrics for automatic identification of" bad smell" design problems in

java source-code," in International Software Metrics Symposium, 2008.

[47] Hozano, M., Garcia, A., Fonseca, B. and Costa, E., "Are you smelling it? Investigating how

similar developers detect code smells," Information and Software Technology, vol. 93, pp.

1130-146, 2018.

[48] Hadj-Kacem, M. and Bouassida, N., A Hybrid Approach To Detect Code Smells using

Deep Learning, 2018, pp. 137-146.

[49] F. Luiz, "Identifying Code Smells with Machine Learning Techniques," 2018.

[50] Bennett, K. H. and Rajlich, V. T. V. T., "Software maintenance and evolution," in a

roadmap. In Proceedings of the Conference on the Future of Software Engineering, 2000.

[51] Liu, H., Ma, Z., Shao, W. and Niu, Z., "Schedule of bad smell detection and resolution: A

new way to save effort," IEEE transactions on Software Engineering, vol. 38(1), pp. 220-

235, 2011.

132

[52] Abran, A. and Nguyenkim, H, "Measurement of the maintenance process from a demand‐

based perspective," Journal of Software Maintenance: Research and Practice, vol. 5(2),

pp. 63-90, 1993.

[53] Seng, O., Stammel, J. and Burkhart, D., "Search-based determination of refactorings for

improving the class structure of object-oriented systems," in 8th annual conference on

Genetic and evolutionary computation, 2006.

[54] Van Emden, E. and Moonen, L., "Java quality assurance by detecting code smells," in Ninth

Working Conference on Reverse Engineering, 2002.

[55] G. N. H. K. A. a. N. V. Saranya, "Model level code smell detection using egapso based on

similarity measures," Alexandria engineering journal, vol. 57(3), pp. 1631-1642, 2018.

[56] Azeem, M.I., Palomba, F., Shi, L. and Wang, Q., "Machine learning techniques for code

smell detection: A systematic literature review and meta-analysis," 2019.

[57] Mathur, N. and Reddy, Y.R., "Correctness of Semantic Code Smell Detection Tools.," in

In QuASoQ/WAWSE/CMCE@ APSEC, 2015.

[58] Al-Shaaby, A., Aljamaan, H. and Alshayeb, M., "Bad Smell Detection Using Machine

Learning Techniques: A Systematic Literature Review.," Arabian Journal for Science and

Engineering, vol. 45(4), pp. 2341-2369, 2020.

[59] Chatzigeorgiou, A. and Manakos, A., "Investigating the evolution of code smells in object-

oriented systems," Innovations in Systems and Software Engineering, 2014.

[60] Roy, R., Stark, R., Tracht, K., Takata, S. and Mori, M., Continuous maintenance and the

future–Foundations and technological challenges, 2016, pp. 667-688.

[61] Hamid, A., Ilyas, M., Hummayun, M. and Nawaz, A., "A comparative study on code smell

detection tools.," International Journal of Advanced Science and Technology, vol. 60, pp.

25-32, 2013.

[62] Liu, X. and Zhang, C., "The detection of code smell on software development: a mapping

study," in 5th International Conference on Machinery, Materials and Computing

Technology (ICMMCT 2017), Atlantis , 2017.

[63] B. a. A. T. Walter, "The relationship between design patterns and code smells," Information

and Software Technology, vol. 74, pp. 127-142, 2016.

[64] Mantyla, M., Vanhanen, J. and Lassenius, C., "A taxonomy and an initial empirical study

of bad smells in code.," in International Conference on Software Maintenance, 2003.

[65] M. Mantyla, "Bad smells in software-a taxonomy and an empirical study," Helsinki

University of Technology, 2003.

133

[66] Guggulothu, T. and Moiz, S.A., "Code smell detection using multi-label classification

approach," in Software Quality Journal, 2020.

[67] A. Samuel, "Some studies in machine learning using the game of checkers," IBM Journal

of research and development, vol. 3(3), pp. 210-229, 1959.

[68] I. a. M. M. El Naqa, "What is machine learning?," In machine learning in radiation

oncology Springer, Cham., pp. 3-11, 2015..

[69] D. Ruck, S. Rogers, M. Kabrisky, M. Oxley and Suter, "The multilayer perceptron as an

approximation to a Bayes," vol. 1(4), p. 296–298, 1990.

[70] F. P. o. n. Rosenblatt, perceptrons and the theory of brain mechanisms, 1961.

[71] C. Cortes and V. Vapnik, Support-vector networks. Mach. Learn., vol. 20(3), 1995, p. 273–

297 .

[72] H. Aljamaan and M. Elish, "An empirical study of bagging and boosting ensembles for

identifying faulty classes in object-oriented software.," 2009.

[73] D. Broomhead and D. Lowe, Radial basis functions, multi-variable functional interpolation

and adaptive networks, 1988.

[74] N. Friedman, D. Geiger and M. Goldszmidt, Bayesian networkclassifers. Mach. Learn., vol.

29(2–3), 1997, p. 131–163 .

[75] E. Castillo, J. Gutierrez and A. Hadi, Expert Systems and Probabiistic Network Models.,

Berlin: Springer, 1996.

[76] I. e. a. Rish, "An empirical study of the naive Bayes classifer In: IJCAI 2001 Workshop,"

Empirical Methods In ArtifcialIntelligence, vol. 3, p. 41–46, 2001.

[77] G. a. L. A. Seber, Linear Regression Analysis, vol. 329, John Wiley & Sons., 2012.

[78] S. Weisberg, Applied Linear Regression., Wiley, Hoboken, 2005.

[79] L. Breiman, Random forests. Mach. Learn., vol. 45(1), 2001, p. 5–32.

[80] Y. Yuan and M. Shaw, Induction of fuzzy decision trees. FuzzySets Syst., vol. 69(2), 1995,

p. 125–139 .

[81] A. Jain, "Data clustering: 50 years beyond K-means. Pattern recognition letters," vol. 31(8),

pp. 651-666, 2010.

134

[82] Kitchenham, B., Pretorius, R., Budgen, D., Brereton, O.P., Turner, M., Niazi, M. and

Linkman, S., "Systematic literature reviews in software engineering–a tertiary study,"

Information and software technology, vol. 52(8), pp. 792-805, 2010.

[83] Kaur, A. and Singh, S., "Detecting software bad smells from software design patterns using

machine learning algorithms," International Journal of Applied Engineering Research, vol.

13(11), pp. 10005-10010, 2018.

[84] Y. Bengio, Learning deep architectures for AI, Now Publishers Inc., 2009.

[85] Kitchenham, B. and Charters, S., Guidelines for performing systematic literature reviews

in software engineering, 2007.

[86] Di Nucci, D., Palomba, F., Tamburri, D.A., Serebrenik, A. and De Lucia, A., "Detecting

code smells using machine learning techniques: are we there yet?," in international

conference on software analysis, evolution and reengineering (saner), 2018.

[87] W. a. V. V. Kuechler, "A framework for theory development in design science research:

multiple perspectives.," Journal of the Association for Information systems, vol. 13, no. 6,

p. 3, 2012.

[88] J. a. B. R. 2. Venable, "Eating our own cooking: Toward a more rigorous design science of

research methods.," Electronic Journal of Business Research Methods, vol. 10, no. 2, pp.

141-153.

[89] Mhawish, M.Y. and Gupta, M., "Predicting Code Smells and Analysis of Predictions: Using

Machine Learning Techniques and Software Metrics," Journal of Computer Science and

Technology, vol. 35(6), pp. 1428-1445, 2020.

[90] D. S. A. a. F. E. Cruz, "Detecting bad smells with machine learning algorithms: an empirical

study," in 3rd International Conference on Technical Debt, 2020.

[91] F. D. N. D. D. R. C. a. D. L. A. Pecorelli, "On the role of data balancing for machine

learning-based code smell detection," in 3rd ACM SIGSOFT international workshop on

machine learning techniques for software quality evaluation, 2019.

[92] J. H. A. M. N. B. M. a. B. N. Rubin, "Sniffing android code smells: an association rules

mining-based approach," in 6th International Conference on Mobile Software Engineering

and Systems (MOBILESoft), 2019.

[93] D. A. W. S. L. O. W. G. A. a. F. B. Oliveira, "Applying Machine Learning to Customized

Smell Detection: A Multi-Project Study," in 34th Brazilian Symposium on Software

Engineering, 2020.

135

[94] H. X. Z. a. Z. Y. Liu, "Deep learning based feature envy detection," in 33rd ACM/IEEE

International Conference on Automated Software Engineering, 2018.

[95] U. F. F. a. Z. M. Azadi, "Poster: machine learning based code smell detection through

WekaNose," in 40th International Conference on Software Engineering, 2018.

[96] X. S. C. a. J. H. Guo, "Deep semantic-Based Feature Envy Identification," in 11th Asia-

Pacific Symposium on Internetware, 2019.

[97] F. P. F. D. N. D. a. D. L. A. Pecorelli, "Comparing heuristic and machine learning

approaches for metric-based code smell detection," in 27th International Conference on

Program Comprehension (ICPC), 2019.

[98] A. J. S. a. G. S. Kaur, "A support vector machine based approach for code smell detection,"

in International Conference on Machine Learning and Data Science (MLDS), 2017.

[99] H. K. L. a. N. L. Gupta, "An Empirical Framework for Code Smell Prediction using

Extreme Learning Machine.," in 9th Annual Information Technology, Electromechanical

Engineering and Microelectronics Conference (IEMECON), 2019.

[100] K. a. S. R. Karađuzović-Hadžiabdić, "Comparison of machine learning methods for code

smell detection using reduced features," in 3rd International Conference on Computer

Science and Engineering (UBMK), 2018.

[101] A. Y. S. a. D. S. Das, "Detecting Code Smells using Deep Learning," in TENCON 2019-

2019 IEEE Region 10 Conference (TENCON), 2019.

[102] E. B. D. a. B. K. Kiyak, "Comparison of Multi-Label Classification Algorithms for Code

Smell Detection," in 3rd International Symposium on Multidisciplinary Studies and

Innovative Technologies (ISMSIT), 2019.

[103] R. S. J. G. M. a. M. R. Singh, "Transfer Learning Code Vectorizer based Machine Learning

Models for Software Defect Prediction," in International Conference on Computational

Performance Evaluation (ComPE), 2020.

[104] A. a. M. S. Jesudoss, "Identification of Code Smell Using Machine Learning," in

International Conference on Intelligent Computing and Control Systems (ICCS), 2019.

[105] Yang, Y., Ai, J. and Wang, F., "Defect prediction based on the characteristics of multilayer

structure of software network," in International Conference on Software Quality,

Reliability and Security Companion (QRS-C), 2018.

[106] Thongkum, P. and Mekruksavanich, S., "Design Flaws Prediction for Impact on Software

Maintainability using Extreme Learning Machine," in International Conference on Digital

Arts, Media and Technology with ECTI Northern Section Conference on Electrical,

136

Electronics, Computer and Telecommunications Engineering (ECTI DAMT & NCON) ,

2020.

[107] D. C. X. L. H. X. J. a. M. Y. Chen, "Deep learning based cross-project defect prediction,"

in IEEE Access, 2019.

[108] E. A. C. D. J. H. T. L. J. L. M. M. H. a. N. J. .. I. 2. Tempero, "The Qualitas Corpus: A

curated collection of Java code for empirical studies," in Software Engineering Conference,

Asia Pacific , 2010.

[109] R. Marinescu, " Measurement and quality in object-oriented design.," in In Proceedings of

the 21st IEEE international conference on software maintenance, . ICSM’05, 2005.

[110] V. Ferme, "Jcodeodor: a software quality advisor through design flaws detection.Master’s

thesis University of Milano-Bicocca, Milano, Italy," 2013.

[111] S. D. a. H. P. C. Jadhav, ""Comparative study of K-NN, naive Bayes and decision tree

classification techniques."," International Journal of Science and Research (IJSR), vol. 5,

no. 1, pp. 1842-1845, 2016.

[112] "https://www.dataversity.net/," what-is-naive-bayes-classification-and-how-is-it-used-for-

enterprise-analysis. [Online]. [Accessed 28 june 2022].

[113] Sjøberg, D.I., Yamashita, A., Anda, B.C., Mockus, A. and Dybå, T., "Quantifying the effect

of code smells on maintenance effort," Transactions on Software Engineering, vol. 39{8},

pp. 1144-156, 2012.

[114] Palomba, F., Bavota, G., Di Penta, M., Fasano, F., Oliveto, R. and De Lucia, A., "On the

diffuseness and the impact on maintainability of code smells: a large scale empirical

investigation.," Empirical Software Engineering, vol. 23{3}, pp. 1188-1221, 2018.

[115] Palomba, F., Tamburri, D.A.A., Fontana, F.A., Oliveto, R., Zaidman, A. and Serebrenik,

A, "Beyond technical aspects: How do community smells influence the intensity of code

smells?," in IEEE transactions on software engineering., 2018.

[116] Palomba, F., Bavota, G., Di Penta, M., Oliveto, R. and De Lucia, A., "Do they really smell

bad? a study on developers' perception of bad code smells.," in International Conference

on Software Maintenance and Evolution, 2014.

[117] Santos, J.A.M., Rocha-Junior, J.B., Prates, L.C.L., do Nascimento, R.S., Freitas, M.F. and

de Mendonça, M.G.,, "A systematic review on the code smell effect," Journal of Systems

and Software, vol. 144, pp. 450-477, 2018.

137

[118] Palomba, F., Bavota, G., Di Penta, M., Oliveto, R., Poshyvanyk, D. and De Lucia, A,

"Mining version histories for detecting code smells," IEEE Trans. Softw. , vol. 41{5}, p.

462489, 2014.

[119] Rapu, D., Ducasse, S., Gîrba, T. and Marinescu, R., "European Conference on Software

Maintenance and Reengineering," in European Conference on Software Maintenance and

Reengineering, 2004.

[120] Creswell, J.W. and Creswell, Research design: Qualitative, quantitative, and mixed

methods approaches, Sage publications, 2017.

[121] Easterbrook, S., Singer, J., Storey, M.A. and Damian, D., "In Guide to advanced empirical

software engineering," in Selecting empirical methods for software engineering research,

London, Springer, 2008, pp. 285-311.

[122] Fabio, P., Gabriele, B., Di Penta, M., Rocco, O., Denys, P. and De Lucia, A, "Mining

Version Histories for Detecting Code Smells," 2015.

[123] M. Fowler, "Refactoring: Improving the design of existing code," in 11th European

Conference., Jyväskylä, Finland., 1997.

[124] Gasparic, M. and Janes, A., "What recommendation systems for software engineering

recommend," Journal of Systems and Software, vol. 113, pp. 101-113, 2016.

[125] Ghotra, B., McIntosh, S. and Hassan, A.E., "Revisiting the impact of classification

techniques on the performance of defect prediction models," in 37th IEEE International

Conference on Software Engineering, 2015.

[126] Y. Guo, "Measuring and monitoring technical debt," University of Maryland, Baltimore

County, 2016.

[127] adj-Kacem, M. and Bouassida, N., A Hybrid Approach To Detect Code Smells using Deep

Learning, In ENASE, 2018, pp. 137-146.

[128] Khan, S.U. and Azeem, M.I., "Intercultural challenges in offshore software development

outsourcing relationships: an exploratory study using a systematic literature review," IET

software, vol. 8{4}, pp. 161-173, 2014.

[129] C. Kothari, Research methodology: Methods and techniques, New Age International., 2004.

[130] M. Niazi, "Do systematic literature reviews outperform informal literature reviews in the

software engineering domain? An initial case study," Arabian Journal for Science and

Engineering, vol. 40{3}, pp. 845-855, 2015.

138

[131] Palomba, F., Di Nucci, D., Tufano, M., Bavota, G., Oliveto, R., Poshyvanyk, D. and De

Lucia, A., "An open dataset of code smells with public evaluation," in 12th Working

Conference on Mining Software Repositories, 2015.

[132] Palomba, F., Panichella, A., De Lucia, A., Oliveto, R. and Zaidman, A., "A textual-based

technique for smell detection," in international conference on program comprehension

(ICPC, 2016.

[133] Palomba, F., Zaidman, A. and De Lucia, A., "Automatic test smell detection using

information retrieval techniques," in International Conference on Software Maintenance

and Evolution (ICSME), 2018.

[134] International Conference on Software Maintenance and Evolution (ICSME), "An

exploratory study on the relationship between changes and refactoring," in International

Conference on Program Comprehension (ICPC), 2017.

[135] Peters, R. and Zaidman, A., "Evaluating the lifespan of code smells using software

repository mining," in European Conference on Software Maintenance and Reengineering,

2012.

[136] Spadini, D., Palomba, F., Zaidman, A., Bruntink, M. and Bacchelli, A., "On the relation of

test smells to software code quality," in International Conference on Software Maintenance

and Evolution (ICSME), 2018.

[137] Taibi, D., Janes, A. and Lenarduzzi, V., "How developers perceive smells in source code,"

Information and Software Technology, vol. 92, pp. 223-235, 2017.

[138] Tantithamthavorn, C., McIntosh, S., Hassan, A.E. and Matsumoto, K., "An empirical

comparison of model validation techniques for defect prediction models," IEEE

Transactions on Software Engineering, vol. 43{1}, pp. 1-18, 2016.

[139] Tarhan, A. and Giray, G., "On the use of ontologies in software process assessment: a

systematic literature review," in International Conference on Evaluation and Assessment

in Software Engineering, 2017.

[140] Tsantalis, N. and Chatzigeorgiou, A, "Identification of move method refactoring

opportunities," IEEE Transactions on Software Engineering, vol. 35{3}, pp. 347-367,

2009.

[141] Tufano, M., Palomba, F., Bavota, G., Di Penta, M., Oliveto, R., De Lucia, A. and

Poshyvanyk, D., "An empirical investigation into the nature of test smells," in International

Conference on Automated Software Engineering, 2016.

139

[142] Tufano, M., Palomba, F., Bavota, G., Oliveto, R., Di Penta, M., De Lucia, A. and

Poshyvanyk, D., "When and why your code starts to smell bad (and whether the smells go

away)," in Transactions on Software Engineering, 2017.

[143] Vilela, J., Castro, J., Martins, L.E.G. and Gorschek, T, "Integration between requirements

engineering and safety analysis," A systematic literature review. Journal of Systems and

Software, vol. 125, pp. 68-92, 2017.

[144] Yamashita, A. and Moonen, L., "Do code smells reflect important maintainability

aspects?," in 28th IEEE international conference on software maintenance (ICSM), 2012.

[145] Zazworka, N., Shaw, M.A., Shull, F. and Seaman, C., "Investigating the impact of design

debt on software quality," in In Proceedings of the 2nd Workshop on Managing Technical

Debt, 2011.

[146] Palomba, F., Zaidman, A., Oliveto, R. and De Lucia, A., "An exploratory study on the

relationship between changes and refactoring," in 25th International Conference on

Program Comprehension (ICPC), 2017.

[147] Mäntylä, M.V. and Lassenius, C.,, "Subjective evaluation of software evolvability using

code smells: An empirical study.," in Empirical Software Engineering.

[148] S. Tarwani and A. Chug, "Predicting maintainability of open sourcesoftware using Gene

Expression Programming and bad smells. In: 2016 5th International Conference on

Reliability, InfocomTechnologies and Optimization (Trends and Future Directions)

(ICRITO)," 2016.

