

COLLEGE OF COMPUTING

DEPARTMENT OF INFORMATION TECHNOLOGY

MASTERS OF COMPUTER NETWORK AND SECURITY

Improving the Execution Speed of Rivest-Shamir-Adleman

Cryptosystem Using Modified Modular Exponentiation Algorithm

Debebe Kebede Mamo

debebekebede1426@gmail.com

Debre Berhan, Ethiopia

February 2023

mailto:debebekebede1426@gmail.com

COLLEGE OF COMPUTING

DEPARTMENT OF INFORMATION TECHNOLOGY

MASTERS OF COMPUTER NETWORK AND SECURITY

Improving the Execution Speed of Rivest-Shamir-Adleman

Cryptosystem Using Modified Modular Exponentiation Algorithm

Debebe Kebede Mamo

Advisor: Yelkal Mulualem (PhD)

This is to certify that the thesis prepared by Debebe Kebede, titled: Improving the Execution

Speed of Rivest-Shamir-Adleman Cryptosystem Using Modified Modular Exponentiation

Algorithm and submitted inpartial fulfillment of the requirements for the Degree of Master of

Science in Computer Network and Security complies with the regulations of the University and

meets the accepted standards withrespect to originality and quality.

Signed by the Examining Committee:

Name Signature Date

Advisor: Yelkal Mulualem

Examiner:

 23/06/2015 E.C

Examiner: Asrat Mulatu (Ph.D.) 20/04/2023

Chairperson:

Debre Berhan, Ethiopia

February 2023

Dedication
This thesis is dedicated to my mother, Nigatwa Tezera, and my father, Kebede Mamo. Without their

endless love and encouragement, I would never have been able to complete my graduate studies. I love

you both and I appreciate everything that you have done for me.

Abstract

Nowadays, public-key cryptography, especially Rivest-Shamir-Adleman (RSA), is becoming more

and more crucial for e-commerce transactions. Several digital consumer appliances, such as set-

top boxes and smart cards, may now send and receive many RSA-encoded messages. However,

due to the exponentiation and multiplications of very large numbers, the RSA algorithm is inappropriate

for encrypting large messages. Hence to fill this gap, this thesis work proposes an efficient modular

exponentiation technique for the RSA cryptosystem which can enhance the execution speed of the

standard RSA cryptosystem by applying the square-multiply technique of exponentiation. The

MATLABR2019a programming platform is employed for the actual implementation of this study.

The proposed work discusses the Standard RSA (SRSA) and Modified RSA (MRSA) cryptographic

algorithms by considering different performance evaluation metrics such as encryption time,

decryption time, memory usage, throughput, and avalanche effect through a practical

implementation using MATLAB. Concerning the encryption and decryption time performance, the

MRSA algorithm outperforms the SRSA algorithm by 17.46442% and 18.70409%, respectively.

Moreover, the MRSA has a 14.53511% higher avalanche value than the SRSA, showing its greater

security. Also, it outperforms the SRSA algorithm in terms of encryption and decryption

throughput by 15.80883% and 15.12928% respectively. However, because the MRSA algorithm

uses an array list, which uses more memory than the SRSA, it consumes slightly more memory

(1.05849%) overall.

Keywords: Modular Exponentiation, Rivest-Shamir-Adleman (RSA), Encryption and Decryption,

Cryptography, Private Key, Public Key, Security

Acknowledgment
I will always be grateful to God, who is the Creator and the Guardian and to whom I owe my

existence.

I would like to express my gratitude and admiration for my adviser, Dr. Yelkal Mulualeman, an

Assistant Professor at the University of Gondar. He has been a fantastic mentor for me. His

enlightening direction, kind critique, and friendly counsel have been priceless. I genuinely

appreciate him for providing his insightful and accurate opinions on a variety of topics.

I also want to express my gratitude to Dr.Eng. Yihenew Wondie, Dr. Esubalew Yitayal, Dr.

Samuel Asferaw, Dr. Henock Mulugeta, Dr. Workshet Lamenew, and Mr. Getaneh Awlachew for

sharing their inspiring ideas with me. Without their assistance, I might not have had the chance to

complete my thesis.

My family also deserves special thanks. Words cannot express how grateful I am to them for all

the sacrifices they’ve made on my behalf. Their trust and vote of confidence have kept me going

thus far.

Finally, it gives me great pleasure to acknowledge the contributions of my colleagues, whose

friendship, cooperation, and understanding were essential to the success of my thesis.

i

Table of Contents

Abstract .. ii

Acknowledgment .. iii

List of Figures ... iv

List of Tables ... v

Acronyms and Abbreviations ... Vi

Chapter One ... 1

Introduction .. 1

1.1. Background ... 1

1.1. Motivation ... 2

1.2. Statement of the Problem .. 3

1.3. Research Questions ... 4

1.4. Research Objectives .. 4

1.5. Significance of the Study .. 4

1.6. Scope and Delimitation of the Study ... 5

1.7. Thesis Outline ... 5

Chapter Two ... 6

Literature Review ... 6

2.1. Introduction ... 6

2.1. The RSA Algorithm .. 10

2.2. Working Principles of RSA Algorithm ... 11

2.3. RSA Algorithm with Example .. 13

2.4. Application of Prime Numbers in Cryptography .. 16

2.5. Restrictions on the Selection of Prime Numbers .. 16

ii

2.6. RSA Digital Signature Scheme ... 17

2.6.1. The RSA Digital Signature Algorithms:... 18

2.7. Number Theory Behind RSA .. 19

2.7.1. Prime Generation and Integer Factorization ... 19

2.8. Practical applications of the RSA Algorithm .. 19

2.9. Advantages and Disadvantages of the RSA Algorithm .. 20

2.10. Execution Speed of RSA Algorithm ... 20

2.11. Related Works ... 21

2.12. Summary of Related Works .. 25

Chapter Three ... 27

3.1. Introduction ... 27

3.2. Computational Aspects of the RSA Algorithm ... 27

3.3. Modular Exponentiation .. 28

3.4. The Naive Modular Exponentiation Method .. 29

3.4.1. Memory Efficient Method .. 29

3.6. The Modified Modular Exponentiation Method ... 31

4.1. Overview ... 35

4.2. Implementation.. 35

4.2.1. Standard RSA (SRSA) Implementation ... 36

4.2.2. Modified RSA(MRSA) Implementation .. 38

4.3. Performance Analysis and Results .. 40

4.3.1. Encryption Time ... 40

4.3.2. Decryption Time ... 41

4.3.3. Memory Utilization .. 43

4.3.4. Avalanche Effect .. 45

iii

4.3.5. Throughput ... 50

4.4. Discussions .. 53

Chapter Five ... 54

Conclusion and Recommendations .. 54

5.1. Conclusion ... 54

5.2. Recommendations ... 54

5.3. Contributions ... 55

5.4. Future Work .. 55

References .. 56

iv

List of Figures

Figure 1.1: A Simple Illustration of Public Key Cryptography ... 9

Figure 2.2: Public Key Cryptography .. 10

Figure 2.3: Structure of RSA Algorithm .. 13

Figure 2.4: Flowchart of RSA encryption and decryption operations ... 15

Figure 3.2: Naive Modular Exponentiation Example .. 30

Figure 3.3: Flowchart for Computing ab mod n Using Modified Method .. 33

Figure 4.0: Generating a random prime number having a 256-bit size ... 36

Figure 4.1: Implementation of SRSA Algorithm for p and q values ... 37

Figure 4.2: ASCII code and Decrypted Message of SRSA ... 37

Figure 4.3: Implementation of MRSA Algorithm for p and q values .. 38

Figure 4.4: ASCII code and Decrypted Message of MRSA ... 39

Figure 4.5: Analysis of Encryption Performance (in seconds) .. 41

Figure 4.6: Analysis of Decryption Performance (in seconds) .. 43

Figure 4.7: Snapshot showing Memory consumed by the MRSA ... 43

Figure 4.8: Snapshot showing Memory consumed by the SRSA .. 44

Figure 4.9: Analysis of Memory Usage (MB) ... 45

Figure 4.10: Analysis of Avalanche Effect (%) ... 49

Figure 4.11: Analysis of Encryption Throughput (BPs) .. 51

Figure 4.12: Analysis of Decryption Throughput (BPs) .. 53

v

List of Tables

Table 2.0: Summary of Related Works .. 25

Table 2Table 3.1: Result of the Modified Modular Exponentiation Algorithm for ab mod n, where a =

240, b = 262(10) = 100000110(2), n = 14 ... 34

Table 4.0: Summary of Encryption Time for the Standard and Modified RSA Algorithm 40

Table 4.1: Summary of Decryption Time for the Standard and Modified RSA Algorithm 41

Table 4.2: Comparison of the encryption time of SRA and MRSA algorithms (%) 42

Table 4.3: Comparison of the decryption time of SRA and MRSA algorithms (%) 42

Table 4.4: Summary of Memory Usage for the Standard and Modified RSA Algorithm 44

Table 4.5: Comparison of the memory consumption of SRA and MRSA algorithms (%) 45

Table 4.6: Avalanche Test of the SRSA .. 47

Table 4.7: Avalanche Test of the MRSA ... Error! Bookmark not defined.

Table 4.8: Comparison of the avalanche effect of SRA and MRSA algorithms (%) 49

Table 4.9: Summary of Encryption Time for the Standard and Modified RSA Algorithm Using Different

Message Sizes .. 50

Table 4.10: Summary of Encryption Throughput for the Standard and Modified RSA Algorithm

(Byte/second) ... 51

Table 4.11: Summary of Decryption Time for the Standard and Modified RSA Algorithm Using

Different Message Sizes .. 51

Table 4.12: Summary of Decryption Throughput for the Standard and Modified RSA Algorithm

(Byte/second) ... 52

Table 4.13: Comparison of the encryption throughput of SRA and MRSA algorithms (%) 52

Table 4.14: Comparison of the decryption throughput of SRA and MRSA algorithms (%) 52

vi

Acronyms and Abbreviations

BFW Bit Forwarding

CRT Chinese Remainder Theorem

LPC Linear Predictive Code

MATLAB Matrix Laboratory

MRSA Modified RSA

MSB Most Significant Bit

PGP Pretty Good Privacy

SET Secure Electronic Transaction

SEW Substitute and Reward

SFW Store and Forward

SMTP Simple Mail Transfer Protocol

SRSA Standard RSA

SSL Secure Socket Layer

SSNR Segmental Signal-to-Noise

1

Chapter One

Introduction

1.1. Background

The RSA algorithm was introduced in 1977 by Rivest, Shamir, and Adleman at MIT and

was first published in 1978. The RSA scheme has since that time reigned supreme as the

most widely accepted and implemented general-purpose approach to public-key

cryptosystems [1]. RSA has been used extensively in various applications such as

banking, telecommunications, and eCommerce. It is often used to secure communications

between web browsers and eCommerce sites.

Four key concepts serve as the foundation for cryptography, with the goals of preserving

confidentiality, data integrity, authenticity, and non-repudiation. By establishing a set of

guidelines that restrict access to particular data, cryptography provides confidentiality. On

the other side, data integrity is maintained by making sure that data is accurate and

consistent over its entire life cycle. Authentication, on the other hand, helps in verifying

the veracity of a datum attribute that some entity asserts to be true. Cryptography

also assures that a statement or piece of data's originator cannot refute it in the case of

nonrepudiation[2].

With the help of cryptographic technology, it is possible to communicate or transmit data

electronically without having to worry about fraud or other forms of deception

(confidentiality), while also retaining the message's integrity and the sender's legitimacy.

This is accomplished by converting data into various, unintelligible formats (ciphertext or

code). Encryption refers to the act of converting data into ciphertext, and decryption refers

to the process of converting ciphertext into plaintext, or understandable data. Both

encryption and decryption processes are carried out using secret information such as

passwords or keys [3].

RSA is the typical public-key cryptosystem for securing the information sent through the insecure

channel by using encryption and decryption processes. This algorithm uses a pair of keys for the

implementation. One is called the public key, which is known to everyone. The other is called a

private key, which is kept secretly by the owner. RSA isof one-way function that is very easy to

compute two prime numbers. On the other hand, the inverse which is about integer factorization is

2

very difficult. If the key length is too small, RSA may be broken by using some attacking

techniques such as factoring algorithms. Therefore, the key length should be at least 1024 bits to

avoid attacking from third parties. Because of technology which is grown very fast, 1024 bits may

not be safe enough. At present, this algorithm is presented to perform with a high key length which

is larger than 1024 bits to apply with many applications to ensure a high-security level [4].

The RSA algorithm is based on the simple mathematical principle that ―It is relatively easy to

multiply two large prime numbers, but it is very difficult to factorize the product into prime factors

if the product is supplied‖ [5]. The expectation that the encryption work is the security of RSA

that depends on, thus decoding an encrypted message is computationally infeasible for an intruder.

Public-key cryptosystems are the most popular, due to both confidentiality and authentication

facilities [6]. The message is encrypted with the public key and can only be decrypted by using

the private key. So, the encrypted message cannot be decrypted by anyone who knows only the

public key, and thus secure communication is possible. In a public-key cryptosystem, the private

key is always linked mathematically to the public key. Therefore, it is always possible to attack a

public-key system by deriving the private key from the public key. The defense against this is to

make the problem of deriving the private key from the public key as difficult as possible. Some

public-key cryptosystems are designed such that deriving the private key from the public key

requires the attackerto factor in a large number.

The security of RSA relies on the practical difficulty of factoring in the product of two

large prime numbers. There is no published method to defeat the system ifa large enough

key is used. However, if too big a key size is used, the execution speed of the algorithm

becomes inefficient [7].

In this paper, we aim to apply amodified modular exponentiation algorithm to reduce the

execution time for the encryption and decryption processes of the RSA algorithm.

1.1. Motivation
Public key cryptography and RSA in particular, is increasingly important to e-commerce

transactions. Many digital consumer appliances (e.g. set-top boxes and smart cards) are now

expected to send and receive RSA-encoded messages. However, the competition requires a long

processing time. This is an issue even for gigahertz desktop computers. For embedded systems,

which typically employ much slower processors, it is an overwhelming problem. Consumers

simply will not tolerate digital set-top boxes that pause for long periods while exchanging secret

information with Web sites.

3

Users will also look dimly upon smart-access devices (smart cards and the associated readers) that

force them to wait in the rain for just a little too long while checking their access privileges.

Consequently, RSA encryption and decryption speed is becoming important to a variety of

embedded devices [8].

Today, the modulus n is typically chosen to be 1024, 2048, 3072,7680, and 15360-bit

numbers [9]. For numbers this, large it would take hundreds of thousands of high-

speed computers many years to derive p and q from the public keys. For these reasons, the

researcher believes that conducting a study associated with the RSA execution speed

performance enhancement is one of the hot issues to be studied.

1.2. Statement of the Problem

Some of the drawbacks associated with RSA include the fact that the RSA cryptosystem is

relatively slow [10] and thus inappropriate for encrypting large messages; this is due to the

exponentiation and multiplications of very large numbers. Whether for encrypting, decrypting,

signing, or verifying, the RSA cryptosystem uses a series of modular multiplications. In RSA, both

encryption and decryption involve raising an integer to an integer power, mod n. Calculating a

modular exponent is as simple as calculating be directly and then taking that number modulo n.

Consider trying to compute c, given b = 5, e = 11, and n = 326: c ≡ 5
11

 (mod 326). A calculator

can be used to compute 5
11

; this comes out to 48,828,125. Taking this value modulo 326, the

answer c is determined to be 171. Here b is only one digit in length and that e is only two

digits in length, but thevalue b
e
 is 8 digits in length. In strong cryptography, b is often at least

1024 bits. Consider the values b = 7*13
10

 and e= 14, which are both perfectly reasonable. In this

example, b is 12 digits in length and e is 2 digits in length, but the value be is 169 decimal digits

in length.

Modern computers can perform such calculations; however, the sheer volume of the numbers

slows the calculations down significantly. As b and e increase even further to provide better

security, the value becomes unwieldy. The amount of time it takes to conduct exponentiation is

determined by the operating environment and processor. The majority of modular arithmetic's

technological applications involve exponentials with huge numbers. Our proposed method is

assumed to reduce the number of operations required to conduct modular exponentiation

4

drastically while maintaining the same memory footprint as the previous way. It combines the

previous method with a more general concept known as binary exponentiation.

1.3. Research Questions

In addressing the above-mentioned gaps, this paper aims to investigate and fill these gaps

by answering the following two research questions. 1) How to improve the execution time

of the standard RSA cryptosystem? 2) How to implement the proposed algorithm using

appropriate cryptography tools and techniques?

1.4. Research Objectives

General Objective

The study’s general objective is to improve the execution speed of the RSA using a

modified modular exponentiation algorithm.

Specific Objectives

The specific objectives include:

 To demonstrate the performance gap of the RSA algorithm.

 To design an enhanced scheme that conquers the standard RSA performance

deficiency.

 To implement the proposed algorithm using appropriate cryptography tools.

 To compare the performance of the suggested RSA computational approach to that

ofthe standard scheme.

1.5. Significance of the Study

Nowadays E-commerce transactions are becoming more and more dependent on public-

key cryptography RSA in particular. Many RSA-encoded messages are now able to

be sent and received by a large number of digital consumer appliances, including set-top

boxes and smart cards [11]. It requires a significant amount of processing time to decode

this information, so investigating this research is expected to solve such challenges. The

study also has a significant contribution to both academic researchers and practitioners.

Academic researchers will be benefited from the theoretical and empirical contribution

since it tries to fill the existing literature gap notably on the RSA cryptosystem efficiency

defect. More than ever, studies are needed in quantum-crypto-resistant methods for

5

quantum computers, as existing cryptographic systems will soon be resolved. This study

will support the development of crypto processors by assisting in the effective selection of

the underlying modular exponentiation unit to reduce hardware cost complexity while

increasing the execution speed of the RSA algorithm.

1.6. Scope and Delimitation of the Study

This study is focusing on the improvement of the RSA cryptosystem execution speed

during data encryption and decryption while preserving its security. Due to a limited

amount of financial resources and time framework, the study is delimited to only the

enhancement of standard RSA cryptosystem implementation efficiency. The study is also

limited to the enhancement of the RSA algorithm encryption and time rather than its key

generation time. Due to limited computer system specifications, the practical

implementation is performed by utilizing smaller key sizes ranging from 28 bits to 512

bits. The proposed work also addressed only textual data for practical implementation.

1.7. Thesis Outline

The rest of the document is organized as follows. In Chapter Two review of the literature

about our research is presented. Key concepts about the RSA cryptosystem and modular

exponentiation algorithm are described. Different studies that are presented in

investigating the RSA algorithm and other cryptosystems are also reviewed and compared

to one another.

In Chapter Three, we present the methodology of the proposed system. It discusses the

design considerations, algorithm design, and major components.

Chapter Four presents an implementation and discussion of the experimental result and its

evaluation.

Finally, conclusions, contributions, and future work are presented in Chapter Five.

6

Chapter Two

Literature Review

2.1. Introduction

The greatest and possibly the only genuine revolution in the history of cryptography is the

development of public-key cryptography. From its earliest beginnings to modern times,

virtually all cryptographic systems have been based on the elementary tools of substitution

and permutation. After millennia of working with algorithms that could be calculated by

hand, a major advance in symmetric cryptography occurred with the development of the

rotor encryption [12].

Public-key cryptography is a fundamental change from everything that has gone before.

For starters, rather than relying on substitution and permutation, public-key algorithms are

based on mathematical functions [13]. Asymmetric public-key cryptography, which

employs two different keys, is more significant than symmetric encryption, which only

requires one key. The usage of two keys has significant effects on key distribution,

authentication, and confidentiality.

An attempt to tackle two of the most challenging issues with symmetric encryption—the

key distribution problem and the problem of trust between two parties resulted in the

development of the idea of public-key cryptography.

For symmetric encryption to work, the two parties to exchange must share the same key

and that key must be protected from access by others. Moreover, frequent key changes are

typically preferred to reduce the amount of data that could be compromised if an attacker

discovers the key. As a result, the key distribution technique—a word that describes the

means of delivering a key to two parties that wish to exchange data without exposing the

secret to others—is what gives any cryptographic system its strength. Key distribution can

be accomplished for two parties A and B in a variety of ways, including the following:

1. A can select a key and hand it to B in person.

2. The key may be chosen and physically delivered to A and B by a third party.

3. If A and B have recently and previously used a key, one of them may send the

7

other a new key that has been encrypted with the old key.

4. If A and B each have an encrypted connection to a third-party C, C may deliver

a key on the encrypted channel to A and B.

For options 1 and 2, a key must be manually delivered. This is a realistic requirement for

link encryption as each link encryption device will only exchange data with its partner at

the other end of the link. However, for end-to-end encryption via a network, awkward

manual delivery. Any device in a distributed system exchanges between a specific host or

terminal and numerous other hosts and terminals as time goes on. Therefore, each device

requires a set of keys that are dynamically given. In a wide-area distributed system, the

issue is particularly challenging.

The second problem of symmetric cryptography apparently unrelated to the first is that of

digital signatures. Electronic messages and documents would require the equivalent of

signatures used in paper documents if encryption were to be widely employed, not just in

military situations but also for commercial and private purposes. In other words, could a

method be developed to conclusively prove that a digital message was transmitted by a

certain individual? Compared to authentication, this requirement is a little bit broader.

To tackle the above problems of symmetric cryptography, public key

cryptography/asymmetric key cryptography/ is introduced. Asymmetric algorithms utilize

a pair of two keys: one for encryption and the other, for decryption. These algorithms have

the following significant features:

 Given just the encryption key and the cryptographic algorithm, it is

computationally infeasible to figure out the decryption key.

 The two related keys can be used interchangeably for encryption and decryption.

8

Figure 2.1: Secret Key (Symmetric) and Public Key (Asymmetric) Cryptography [14]

There are six components to a public-key encryption scheme.

Plaintext: The readable message or data that is sent to the algorithm as input.

The encryption algorithm: The method used to transform data into an encrypted

message (cipher text).

Public and private keys: This is a pair of keys that have been chosen so that if one is

used for encryption, the other is used for decryption. The exact transformations performed

by the algorithm depend on the public or private key that is provided as input.

Cipher text: This is the message that was produced as a scrambled output. The plaintext

and the key will determine this. Two separate keys will result in two distinct ciphertexts

for the same message.

Decryption algorithm: This algorithm generates the original plaintext from the ciphertext

and the matching key.

9

Figure 1.1: A Simple Illustration of Public Key Cryptography [15]

The following are the essential steps of public key cryptography:

1. For the encryption and decryption of messages, each user generates a pair of keys.

2. One of the two keys is stored by each user in a public register or another easily

accessible file. This is the public key. The second key remains a secret. Each user

keeps a collection of public keys they have acquired from other users, as shown in

Figure 2.2.

3. Bob encrypts the message using Alice's public key if he wishes to send her a

confidential message.

4. When Alice receives the message, she uses her private key to decrypt it. Because

only Alice has access to her private key, no other recipient will be able to decrypt

the message.

In this method, private keys are generated locally by each participant and never need to be

shared because everyone has access to the public keys. Incoming communication is secure

as long as a user's private key is kept private and secure. A system can update its private

key at any time and publish the associated public key to replace its previous public key.

10

Figure 2.2: Public Key Cryptography [1]

2.1. The RSA Algorithm

The RSA public key cryptosystem was invented by R. Rivest, A. Shamir, and L. Adleman.

The RSA cryptosystem is built on the dramatic difference between how simple it is to find

large primes and how challenging it is to factor the product of two large prime numbers.

The RSA cryptosystem is built on the dramatic difference between how simple it is to find

large primes and how challenging it is to factor the product of two large prime numbers.

The algorithm is based on modular exponentiation. Numbers e, d, and N are chosen with

the property that if A is a number less than N, then (Ae mod N)d mod N = A. This

indicates that we can use e to encrypt A and d to decrypt it. On the other hand, we can

decrypt with e and encrypt with d. (though doing it this way round is usually referred to as

signing and verification). The pair of numbers (e, N) is known as the public key and can

be published. Whereas the pair of numbers (d, N) is known as the private key and must be

kept secret. The terms ―public exponent,‖ ―private exponent,‖ and ―modulus‖ are used to

describe the numbers e, d, and N, respectively. The modulus length is meant when key

lengths are discussed about RSA. The algorithm uses different keys for encryption and

11

decryption is said to be asymmetric. Anyone with access to the public key can encrypt

messages, but only the owner of the secret key can decrypt them. Conversely, the owner

of the secret key can encrypt messages that anyone with the public key can decrypt. If

such messages are successfully decrypted, only the owner of the secret key could have

encrypted them, according to the successful decryption process. The digital signature

technique is based on this reality.

2.2. Working Principles of RSA Algorithm

The private key in RSA is kept secret, but the public key is distributed to everyone in the

framework. The RSA algorithm has four steps: key generation, key distribution, message

encryption, and message decryption.

Key Generation

i. The receiver arbitrarily chooses two huge prime integers p and q of similar key

lengths.

To determine whether a number is prime, two alternative primality tests can be applied.

One is known as the Miller-Rabin Primality Test, while the other is the Fermat Primality

Test.

In The American National Standards Institute (ANSI X9.31), there are more strict rules for

creating strong primes and additional restrictions on p and q to reduce the likelihood of

known techniques being used against the algorithm. This topic is the subject of numerous

arguments. Most likely, it would be best to simply use a longer key length [16].

ii. The receiver computes the common module n such that n=p*q

iii. It computes the Euler’s totient function: Ø(n)= (p- 1) (q - 1).

iv. Choose a number, e, less than n, that has no common factors (other than 1) with

Ø(n).

In this case, e and n are said to be relatively prime. The letter e is used since this value

will be used in encryption. In practice, the most frequent choices for e are 3, 17, and

65537 (2
16

+1). These are Fermat primes, often known as F0, F2, and F4 respectively.

They were chosen because they speed up the process of modular exponentiation.

12

v. Find a number, d, such that ed - 1 is exactly divisible (that is, with no remainder) by

Ø(n).

The letter d is used because this value will be used in decryption. Put another way, given

e. we choose d such that ed mod n = 1. This is known as modular inversion.

The Extended Euclidean Algorithm can be used to calculate d = e
-1

 mod phi, or d = (1/e)

mod phi, to determine the value of d.

vi. The receiver will publish e and n which are his public keys and keeps d as a secret

key (private key).

Key Distribution

Suppose that Bob wishes to send information to Alice. If they decide to use RSA, Bob

must know Alice's public key to encrypt the message, and Alice must use her private key

to decrypt the message. To enable Bob to send his encrypted messages, Alice transmits

her public key (n, e) to Bob via a reliable, but not necessarily secret, route. Alice's private

key (d) is never distributed.

Message Encryption

Suppose Alice wants to send Bob a bit pattern represented by the integer number m (with

m < n). To encode, Alice performs the exponentiation me, and then computes the integer

remainder when me is divided by n. In other words, the encrypted value, c, of Alice’s

plaintext message, m, is

c = me mod n

The bit pattern corresponding to this cipher text c is sent to Bob.

Message Decryption

To decrypt the received cipher text message, c, Bob computes

m = cd mod n

which requires the use of his private key (n, d).

13

Figure 2.3: Structure of RSA Algorithm [17]

2.3. RSA Algorithm with Example

Step 1: Select primes p=11, q=3.

Step 2: n = p*q = 11*3 = 33 phi = (p-1)(q-1) = 10*2 = 20

Step 3: Choose e=3

Check gcd(e, p-1) = gcd(3, 10) = 1 (i.e. 3 and 10 have no common factors except 1), and

check gcd(e, q-1) = gcd(3, 2) = 1therefore gcd(e, phi) = gcd(e, (p-1)(q-1)) = gcd(3, 20) = 1

Step 4: Compute d such that ed ≡ 1 (mod phi)

i.e. compute d = e-1 mod phi = 3-1 mod 20

i.e. find a value for d such that phi divides (ed-1)

i.e. find d such that 20 divides 3d-1.

Simple testing (d = 1, 2, ...) gives d = 7

Check: ed-1 = 3*7 - 1 = 20, which is divisible by phi.

Step 5: Public key = (n, e) = (33, 3)

14

Private key = (n, d) = (33, 7).

This is the smallest possible value for the modulus n for which the RSA Algorithm works.

Now say we want to encrypt the message m = 7,

Step 6: Encrypt this message using c= m
e
 mod n, c=7

3
 mod 33=13

Step 7: To check decryption we compute m = c

d
 mod n = 13

7
 mod 33 = 7.

15

Figure 2.4: Flowchart of RSA encryption and decryption operations

16

2.4. Application of Prime Numbers in Cryptography

More precisely, some crucial cryptographic algorithms like RSA heavily rely on the fact

that prime factorization of huge integers takes a long time. We have a "secret key" made

up of those two prime numbers that are used to decrypt the message and a "public key"

made up of the product of those two huge prime numbers. Everyone can use the public

key to encrypt messages for us, but only we have access to the prime factors and are able

to decrypt the messages. We can make the public key available to the general public.

Given the state of the art of number theory, everyone else would have to factor the

number, which takes too long to be useful.

2.5. Restrictions on the Selection of Prime Numbers

i) It is best to choose p and q as primes so that it is computationally infeasible to

factor n = p*q. The main requirement for p and q is that they must roughly have

the same bit length and be sufficiently large to avoid the elliptic curve factoring

algorithm. For instance, each of p and q should be roughly 1024 bits long if a

2048-bit modulus n is to be used.

ii) Another restriction on the primes p and q is that the difference p − q should not be

too small. If p - q is small, then p ≈ q and hence p ≈ √n. As a result, n might be

efficiently factored by just doing trial division by all odd numbers close to n.

iii) In addition to these constraints, in cryptography, it is recommended by several

scholars that p and q be strong primes. The following three requirements must all

be met for a prime p to be considered a strong prime:

(a) p - 1 has a large prime factor, denoted r;

(b) p + 1 has a large prime factor; and

(c) r - 1 has a large prime factor.

17

In number theory, a strong prime is a prime number that is greater than the arithmetic mean of the

closest prime above and below (in other words, it's closer to the following than to the preceding

prime). Or, to state it algebraically, writing the prime number series as (p1, p2, p3,...) = (2, 3,

5,...), pn is a strong prime if pn > (pn − 1 + pn + 1)/2. For instance, the seventh prime number

is 17; the sixth and eighth prime numbers, 13 and 19, add up to 32, which is half of 16,

and since 17 is greater than 16, it is a strong prime.

A prime can be a strong prime both in the number theoretic sense and the cryptographic

sense. For example, since the arithmetic mean of its two nearby primes is 62 less, the

number 439351292910452432574786963588089477522344331 is a strong prime in the

number theoretic sense.

This number, 439351292910452432574786963588089477522344330, would be a strong

prime in the sense of cryptography without the aid of a computer because it has the large

prime factors 1747822896920092227343 (and the number one less has the large prime

factor1683837087591611009),and43935129291045243257478696358808947752234433

2. (and in turn, the number one less than that has the large prime factor

105646155480762397).

These numbers would be challenging to factor manually, even with methods more

sophisticated than trial division. These integers factor almost instantly in a modern

computer algebra system. A strong prime in terms of cryptography must be substantially

bigger than this example.

2.6. RSA Digital Signature Scheme

A digital signature is a method of authentication that lets the sender of a message attach a

code that serves as a signature. The message's hash is typically used to create the

signature, which is then encrypted using the creator's private key. The message's integrity

and origins are guaranteed by the signature. A digital signature is used to secure the

authenticity of digital messages or documents. A message is signed by a secret key of the

sender to produce a signature and the signature is verified against the message by a public

key. Thus, anyone can verify the signatures, but only one party holding the secret key can

sign messages. Digital signatures are used widely in e-commerce applications, banking

applications, software distribution, and in other cases where jurisdiction is involved and it

18

is important to detect permanent addresses. The digital signature provides three types of

services such as:

Authentication: This is a procedure to ensure that received messages come from a valid

source. It must verify the signature's time and date as well as its creator.

Message integrity: requires that the contents be verified at the time of the signature and

not changed while the data is being transferred. We cannot obtain the same signature if the

message has been changed.

Non-repudiation: This term refers to the inability of the signer (or sender) to claim

having signed a message or document [18].

Public and private keys are generated by the sender in the RSA digital signature algorithm.

To sign the digital message, the private key is used. After then, the recipient will receive

the signed message. The recipient generates a new verification value from the signed

message that was received to validate the authenticity of digitally signed data by using the

sender's public key. The recipient then compares the verified value to the value of the

original message. The message is validated if the two values matches.

2.6.1. The RSA Digital Signature Algorithms:

Key generation algorithm (generated by the receiver, Bob)

Alice must do the following:

1. Choose two prime numbers (p, q) randomly, secretly, and roughly of the same

size.

2. Compute the modulus n as follows: n = p * q.

3. Compute the Ф(n) as follows: Ф(n) = (p-1) * (q-1).

4. Choose the key e, such that 1 < e < Ф(n), and GCD (e, Ф(n)) = 1.

5. Compute the private key d, such as d = e
-1

 mod Ф(n).

Send the public (n, e) to Bob.

Signature and verification algorithms Signature (sender - Alice)

Alice must do the following:

6. Determine the message m to be signed such that 0 < m < n.

19

FACT 2. Multiplication is easy: Given p and q, it’s easy to find their product, n = p*q.

FACT 1. Prime generation is easy: Finding a random prime number of a specific size

is simple.

CONJECTURE 3. Factoring is hard: Given such an n, it appears to be quite hard to

recover the prime factors p and q.

7. Sign the message as follows: S = m
d
 mod n.

8. Send the signatures with the message m to Bob (receiver).

Verification (receiver - Bob) - Bob must do the following:

9. Obtain the keys (d, n).

10. Obtain s, m from Alice.

11. Compute v as follows: v = s
e
 mod n.

12. Verify the message m as follows: is m=v?

2.7. Number Theory behind RSA

2.7.1. Prime Generation and Integer Factorization

Two basic facts and one conjecture in number theory prepare the way for today’s RSA

public-key cryptosystem.

It is simple to determine whether a number is a prime, even a large prime since prime

numbers of any size are very common.

There are numerous effective techniques to multiply two large numbers.

Finding the factors of a large number generally takes a lot of time, even though the

problem has been studied for hundreds of years. The most efficient methods available now

are much faster than the straightforward strategy of testing each potential factor one at a

time [19].

2.8. Practical applications of the RSA Algorithm

RSA has been extensively applied in several domains. The algorithm continues to this day

to be the most widely used in commercial systems. It is used:

 To protect web traffic, in the SSL protocol (Security Socket Layer),

20

 To ensure email confidentiality and authenticity in PGP (Pretty Good Privacy)

 To ensure a remote SSH connection (Secure Shell).

 Moreover, it is a crucial component of the SET protocol (Secure Electronic

Transaction), which is used in modern payment systems.

Most digital data, information, and phone security applications use RSA. The RSA has the

benefit of being a trusted and secure system, but it also has the drawback of being

incredibly slow in processing data. This is the reason behind its usage in hybrid

cryptographic systems, which combine public key algorithms (RSA) for the secure

transmission of the symmetric key (or session key) required for message encryption and

decryption [20].

2.9. Advantages and Disadvantages of the RSA Algorithm

The RSA algorithm is renowned for its improved convenience and security. Private keys

are not disclosed or transmitted using the RSA technique. Contrarily, with a secret-key

system, keys can only be exchanged manually or through a communication channel. This

is due to the fact that the same key is used for encryption and decryption in secret-key

systems, and there is a possibility that an adversary could discover this secret key during

transmission.

Digital signatures can be provided by public-key systems. There is no way to revoke these

digital signatures. In contrast, authentication in secret-key systems necessitates either the

disclosure of some crucial secrets or the engagement of a third party. This could lead to

the sender rejecting the previously verified message by asserting that one of the parties

involved has compromised the shared secret. The fundamental drawback of public-key

cryptography is speed. Because efficiency and security are always trade-offs. The ideal

key size for RSA is tiny, however, this compromises security in numerous ways.

Numerous secret-key techniques are quicker than asymmetric encryption. Private-key

encryption is used in conjunction with public-key encryption.

2.10. Execution Speed of RSA Algorithm

Electronic commerce applications like online banking and shopping are quickly gaining

popularity due to the ongoing expansion of network infrastructure. RSA public-key

21

cryptosystem is an essential encryption algorithm for authenticating the identity of the

person at the other end of a communication line and for exchanging secret data safely and

is also the existent standard. Before the emergence of more powerful computers and

cryptanalysis tools, 512-bit RSA encryption was thought to be secure enough. Before the

emergence of more powerful computers and cryptanalysis tools, 512-bit RSA encryption

was thought to be secure enough. However, 2048-bit RSA is now strongly advised for

high-security systems. Large-speed RSA hardware accelerators are crucial for smartcards

in electronic commerce systems, especially for authentication servers with a high volume

of accesses.

The bottleneck of the RSA operation is its modular exponentiation for very long numbers.

In hardware, RSA is around 1000 times slower than DES. With a 512-bit modulus, the

fastest Very Large-Scale Integration (VLSI) hardware implementation of RSA has a

throughput of 64 kilobits per second. In software also, DES is around 100 times faster than

RSA [21].

These figures might slightly change as technology advances, but RSA will never be as

quick as symmetric algorithms because public key encryption uses longer keys than

symmetric encryption.

2.11. Related Works

K. Somsuk, T. Chiawchanwattana, and C. Sanemueang (2018) investigated to speed

up the RSA decryption process with large sub-exponents using improved Chinese

Remainder Theorem (CRT). Here the basic idea of CRT is, to speed up the RSA

decryption process. Suppose Bob has the private key d and also knows the primes p and q

(n=p*q) and compute with p and q rather than n.

Step1: Modular representation of cipher text y in p and q. Compute this as follows:

yp = (y mod p)

yq = (y mod q)

Step 2: Modular exponentiation with p and q. Compute exponents as follows:

dp = (d mod (p-1))

22

dq = (d mod(q-1))

Now compute the exponentiation of the plain text xp and xq which are represented in

modulo p and q individually as follows:

xp = (yp
dp

 mod p)

xq = (yq
dp

 mod q)

Step 3: Assemble the final result x and do a couple of more complications as follows:

cp = q

-1
 mod p or cp * q ≡ 1 mod p.

Read as cp equals q inverse of modulo p; or cp times q is congruent to 1 modulo p (i.e

Which number do I have multiply by q in such a way that its reminder is 1 when divided

by p).

Similarly, compute for cq as follows:

cq = p

-1
 mod q or cp * p ≡ 1 mod q.

Read as cq equals p inverse of modulo q; or cp times p is congruent to 1 modulo q (i.e

Which number do I have multiply by q in such a way that its reminder is 1 when divided

by p). Here the value of cp and cq is whole numbers, not fractions.

x = (q *cp) xp + (p*cq) xp mod n; The underlined cofficeints can be precomputed.

It can be shown that the CRT method can speed up the decryption operation of the RSA

algorithm by a factor of four. However, in applying RSA-CRT encryption operation, the

encryption algorithm does not change. Because the public key exponent e is the same as

the standard RSA.

The improved technique to speed up RSA’s decryption process with large values of dp

and dq is presented by modifying some processes of CRT-RSA. The proposed method

suits to solve the problem with high values of dp and dq which are chosen before finding

d. Additionally, ciphertext and sub-exponents must be changed to implement their

proposed method [6].

S. Vollala, V. V. Varadhan, K. Geetha, and N. Ramasubramanian (2014) presented an

efficient modular multiplication algorithm for public-key cryptography like the RSA

23

Diffie and Hellman and the ElGamal schemes. They proposed an efficient algorithm for

computing ax mod n and ax by mod n. In the study, they proposed four algorithms to

evaluate modular exponentiation. Bit forwarding (BFW) algorithms to compute ax mod n,

and to compute ax by mod n two algorithms namely Substitute and reward (SRW), Store,

and Forward (SFW) were proposed.

The proposed algorithms namely BFW1 and BFW2 refer to bit forwarding 1 bit and bit

forwarding 2 bits respectively. These algorithms perform a smaller number of

multiplications in comparison with the binary exponential algorithm. In BFW1 if there are

two consecutive ones in the exponent, one bit can be forwarded thereby reducing one

multiplication for each pair of consecutive ones. The second algorithm BFW2 is a two-bit

forward binary exponentiation method, in which if there are three consecutive ones in the

exponent then two bits at a time can be forwarded so that it reduces two multiplications

for every three consecutive ones [22].

F. H. M. S. Al-Kadei, H. A. Mardan, and N. A. Minas (2020) conducted research to

speed up image encryption using the RSA algorithm. Three experiments were developed

to examine the execution time of encryption and decryption processes. Moreover, some

programming techniques were used to speed up these processes.

The image is taken as input, in the Properties section, the image properties are displayed,

such as the file name, image resolution, and image size. After the image is loaded, the

HEX function extracts the image's HEX code, and the HEX code is converted to

encrypted text depending on the RSA settings. Conversely, the encryption text is loaded,

the RSA algorithm is applied, the text is decrypted, and the resulting string is converted to

an image.

In experiment 1, a picture of 240 Kb and resolution 303 * 538 was selected. This image

was chosen for RSA algorithm coding. In this algorithm, a key length of 1024 Kb was

used. In this experiment, the execution time is recorded with the public key length for its

calculation with the decryption process of the file itself to compare the time of the

encryption and decryption process.

In Experiment 2, they tested the system designed by calculating the time required to

24

perform encryption and decryption of the image. In this image, they selected a picture of a

certain size to encode it using the RSA algorithm. In this experiment they choose a general

key for encryption of a certain length, then they have recorded the results in both

processes, and then compare them with the results of the second experiment to compare

with each other to conclude.

In Experiment 3, they made software modifications that reduce the time it takes to

encrypt and decrypt data [23].

S. Vollala, B. S. Begum, A. D. Joshi, and N. Ramasubramanian (2016) Presented the modular

exponential techniques in higher radix namely, radix-4 and radix8. These algorithms are

compatible with the hardware implementations. The modular multiplications involved in modular

exponentiation are evaluated with the help of the Montgomery multiplication method. They have

introduced modifications in the existing Montgomery method and named as Adapted Montgomery

Multiplication (AMM) Technique [24].

Abouelkheir, E., & El-Sherbiny, S. (2022) In this work, a new modification of the RSA

(Rivest–Shamir–Adleman) algorithm has proposed to enhance the performance of

conventional RSA up on application in audio cryptosystems. The performance was

investigated by measuring some audio quality metrics. The metrics that were estimated

during the experimental test include the Execution Time, Segmental Signal-to-Noise Ratio

(SSNR), Linear Predictive Code measure (LPC), Cepstral Distance Measure (CD), and

Mean Square Error between the original signal and the encrypted signal [25].

Issah Mubasir, Alhassan Abdul-Barik, and Alhassan Salamudeen (2021) Proposed the

use of the Rivest-Shamir-Adleman (RSA) algorithm to implement a system for encrypting

text files of any length (by breaking long messages into valid blocks and encrypting each

block) capable of being transmitted using a Simple Mail Transfer Protocol (SMTP).

Probable primes, 3048 bits in length are generated to be used in the generation of public-

private key pairs for encryption and decryption [26].

Venkatesh, K., Pratibha, K., Annadurai, S., & Kuppusamy, L. (2019) Presented a

reconfigurable architecture for pre-computation methods to compute modular

exponentiation and thereby speeding up RSA and Diffie-Hellman like protocols [27].

25

2.12. Summary of Related Works

Table 2.0: Summary of Related Works

Sr.# Paper Title Authors Description and

findings

Tools and

techniques

used

Shortcomings

1

Speed Up Image

Encryption by

UsingRSA

Algorithm

F. H. M. S. Al-

Kadei, H.

A. Mardan

and N. A.

Minas (2020)

In this paper, the authors

have developed three

experiments to examine

the execution time of the

processes of RSA

encryption and

decryption and compare

the results together to

elicit improved points

and discuss them.

Java

Limited to only the

encryption of

images.

2

High-Radix Modular

Exponentiation

for Hardware

Implementation of

Public-Key

Cryptography

S. Vollala, B. S.

Begum, A.

D. Joshi and N.

Ramasubramania

n(2016)

This paper presented the

modular

exponential

techniques in higher

radixnamely, radix-4

and radix-8.

Mont-gomery

Multiplication

(AMM)

Technique

The problem of

overflowing a finite

computation range

3

Speed up RSA’s

Decryption Process

with Large sub

Exponents using

Improved CRT

K. Somsuk, T.

Chiawchanwatta

na, and C.

Sanemueang

(2018)

Proposed to speed up

RSA’s decryption

process by modifying

some processes of CRT-

RSA.

Improved

CRT

It is only applicable

for decryption.

26

4

Enhancement of

Speech

Encryption/Decryptio

n Process Using RSA

Algorithm Variants

Abouelkheir, E.,

& El- Sherbiny,

S. (2022)

The dynamic keys with

five primes were

employed to increase

security and speed.

MATLAB

Even though the

proposed work uses

five prime numbers

to boost the

algorithm's security

level, it lengthens

the system's running

time.

5

Fast Implementation

of the Rivest-Shamir-

Adleman (RSA)

Algorithm with

Robust Packet Data

Loss Detection

Function

Issah Mubasir,

Alhassan Abdul-

Barik and

Alhassan

Salamudeen

(2021)

This study proposed a

method for encrypting

text files of arbitrary size

using the Rivest-Shamir-

Adleman (RSA)

algorithm (by breaking

long messages into valid

blocks and encrypting

each block) capable of

being transmitted using a

Simple Mail Transfer

Protocol (SMTP).

Java

The system's

limitation is that it

only encrypts text

files.

6

Reconfigurable

Architecture to

Speed- up Modular

Exponentiation

Venkatesh, K.,

Pratibha, K.,

Annadurai, S., &

Kuppusamy, L.

(2019).

In this paper, they have

presented a

reconfigurable

architecture for pre-

computation methods to

compute modular

exponentiation and

thereby speeding up RSA

and Diffie-Hellman

like protocols.

VHDL

hard-

ware

description

language

and

Sim SE

simulator

Instead of

considering both the

hardware and

software aspects of

modular

multiplication, the

study largely

concentrated on the

hardware aspect.

27

Chapter Three

Proposed Computing Model of Modular Exponentiation for

RSA Cryptosystem

3.1. Introduction

This chapter is devoted to explaining the methods that were followed by this study. It

describes the methodologies that were employed, the rationale behind the selection, and

the proposed system.

3.2. Computational Aspects of the RSA Algorithm

The modular exponentiation technique is a crucial but time-consuming method used in a

wide range of scientific investigations and real-world applications, particularly those

involving modern cryptology.

In RSA, both encryption and decryption involve raising an integer to an integer power,

mod n. If the exponentiation is done over the integers and then reduced modulo n, the

intermediate values would be enormous. To implement the RSA Algorithm for huge

integer values, we need to focus on the calculation of the remainder value for the

exponential function of both encryption and decryption. The first modular exponentiation

rule states that we should not compute C = M
e
 (mod n) by first exponentiation M

e
 and

then dividing to get the remainder C = (M
e
)% n. At each exponentiation step, the

temporary results must be reduced modulo n. This is due to the large space needed for the

binary number M
e
. We need bits to store M

e
, assuming M and e each have 256 bits.

log2(M
e
) =e.log2(M)≈2^256.256 = 2^264 ≈10^80

This number is roughly equivalent to the total number of particles in the universe. We

don't have the means to store it.

Let's determine the number of modular multiplications required to calculate M
e
 mod n.

The naive method of calculating C = M
e
 (mod n) is to start with C = M(mod n) and

continue executing the modular multiplication operations C = C. M (mod n) until C = M
e

(mod n) is obtained. The naive method would be difficult for large values of e because it

28

requires e - 1 modular multiplication to compute C = M
e
 (mod n). For example, if we

need to calculate M^15 (mod n), this method computes all powers of M until 15:

M → M 2 → M3 → M4 → M5 → M6 → M 7 →. →M15 [28]

3.3. Modular Exponentiation

Public key cryptography requires raising big powers to bases and then reducing the result

using modulo functions, which is computationally expensive. This method is referred to as

modular exponential. In practice, the modular exponential function must be both fast and

efficient for the RSA algorithm to be effective. Modular exponentiation is exponentiation

performed over a modulus. It has applications in computer science, particularly in public-

key cryptography, where it is used in both Diffie-Hellman Key Exchange and RSA

public/private keys. Figure 3.0 shows the simple modular operations.

(u+v)mod n = ((u mod n) + (v mod n)) mod n

(u-v)mod n = ((u mod n) - (v mod n)) mod n

(u*v)mod n = ((u mod n) * (v mod n)) mod n

Figure 3.0 Properties of Modular Arithmetic

The remainder obtained by multiplying an integer b (the base) by an exponent e (the

exponent) and dividing the result by a positive integer n (the modulus) is known as

modular exponentiation; it is represented by the formula c = b
e
 mod n. It follows from the

definition of division that 0 ≤ c < n.

For instance, given b = 5, e = 3 and n = 13, dividing 53 = 125 by 13 leaves a remainder of

c = 8. Modular exponentiation can be performed with a negative exponent e by finding the

modular multiplicative inverse d of b modulo n using the extended Euclidean algorithm.

That is c = b
e
 mod n = d

−e
 mod n, where e < 0 and b * d ≡ 1 (mod n).

Even for extremely big integers, modular exponentiation is an effective computation

method. On the other hand, it is said to be challenging to compute the modular discrete

logarithm, which involves determining the exponent e when given b, c, and n. The one-

way function characteristic of modular exponentiation makes it a candidate for use in

cryptography methods.

29

1. Set c = 1, e′ = 0.

2. Increase e′ by 1.

3. Set c = (b * c) mod n.

4. If e′ < e, go to step 2. Else, c contains

the correct solution to c ≡ be (mod n).

3.4. The Naive Modular Exponentiation Method

The most way to determine a modular exponent is to determine b
e
 directly, then take this

number and modulo n. Suppose we're attempting to determine c with b = 7, e = 13, and n

= 437: c ≡ 7
13

 (mod 437) (mod 437).

To calculate 7
13

, one may use a calculator; the result is 96,889,010,407. The solution c is

found to be 273 by taking this value modulo 437.

3.4.1. Memory Efficient Method

This technique of modular multiplications is applied repeatedly to make each operation

relatively faster, saving time as well as the efficiency of memory. This formula uses the

property: (a * b) mod m = [(a mod m) * (b mod m)] mod m.

Algorithm 3.0 Computing a
b
 mod n Using the Naive Approach

This algorithm simply counts up e′ by ones until e′ reaches e, doing a multiply by b and

performing a modulo operation each time it adds one (to ensure the results stay small).

This technique uses e-1 modular multiplications, which makes it inefficient.

The larger value of e in cryptography determines the security, and efficiency depends on

how efficiently these modular multiplications and modular exponential functions can be

solved. If we use this naive technique, the plaintext, cipher text, or even partial cipher text,

which is intended to be of high value, will need a lot of modular multiplications.

30

1. e′ = 1 * c = (1 * 7) mod 437 = 7 mod 437 = 7.

2. e′ = 2 * c = (7 * 7) mod 437 = 49 mod 437 = 49.

3. e′ = 3 * c = (49 * 7) mod 437 = 343 mod 437 = 343.

4. e′ = 4 * c = (343 * 7) mod 437 = 2401 mod 437 = 216.

5. e′ = 5 * c = (216 * 7) mod 437 = 1512 mod 437 = 201.

6. e′ = 6 * c = (201 * 7) mod 437 = 1407 mod 437 = 96.

7. e′ = 7* c = (96 * 7) mod 437 = 672 mod 477 = 235.

8. e′ = 8 * c = (235 * 7) mod 437 = 1645 mod 437 = 334.

9. e′ = 9 * c = (334 * 7) mod 437 = 2338 mod 437 = 153.

10. e′ = 10 * c = (153 * 7) mod 437 = 1071 mod 437 = 197.

11. e′ = 11 * c = (197 * 7) mod 437 = mod 437 = 68.

12. e′ = 12 * c = (68 * 7) mod 437 = 476 mod 437 = 39.

13. e′ = 13 * c = (39 * 7) mod 437 = 273 mod 437 = 273

FACT4. Modular exponentiation is easy: Given n, m, and e, it’s easy to compute c =

m
e
 mod n

For instance: with m = 7, e = 13, and n = 437, the naive modular exponential will solve

m
e
 mod n as shown in figure 3.2. and gives the result as 273.

Figure 3.2: Naive Modular Exponentiation Example

3.5. Modular Exponentiation and Roots

Given the background of Prime Generation and Integer Factorization facts and conjecture

in chapter two, n will hereafter denote the product of two large, randomly generated

primes. Let e be an odd integer between 3 and n-1 that is relatively prime to p-1 and q-1,

and let m and c be integers between 0 and n-1. This implies that the following equation

is true:

GCD (e,(p-1)*(q-1))=1

Two more facts and one more conjecture is the basis for the encryption and decryption

processes in the RSA public-key cryptosystem:

31

FACT5. Modular root extraction – the reverse of modular exponentiation – is

easy given the prime factors: Given n, e, c, and the prime factors p and q, it’s easy to

recover the value m such that c = m
e
 mod n.

CONJECTURE6. Modular root extraction is otherwise hard: Given only n, e, c,

but not the prime factors, it appears to be quite hard to recover the value m.

Formally, the value m
e
 mod n is obtained by multiplying e copies of m, dividing the result

by n, and keeping the remaining part. This computation may seem to be expensive

because it involves e-1 multiplications by m with increasing intermediate results, followed

by a division by n. But, two optimizations simplify the process.

The number of multiplications can be reduced to no more than twice the size of e in binary

by using an appropriate sequence of previous intermediate values instead of only m.

The intermediate results are kept at the same size as n by dividing and taking the leftover

value after each multiplication [29].

By performing a modular exponentiation procedure with another odd integer d between 3

and n-1, the value m can be extracted from the result c. For this d, in particular, the

following is true for all m:

m = (m

e
)

d
 mod n. and

If e, p, and q are known, it is simple to calculate the integer d.

We need to calculate d from the values of e, p, and q, where d is the multiplicative inverse

of e modulo (n).

3.6. The Modified Modular Exponentiation Method

Most of the time, a problem arises that requires exponentiation, and usually, a crude

approach to compute these values suffices. However, every rule has an exception, so

knowing a few tips to ramp up efficiency. This is where the naive method is replaced by

rapid modular exponentiation, which offers a considerably more effective solution to the

problem.

32

c 0; f 1

for i k downto 0

do c 2 * c

f (f * f) mod n

if bi = 1

then c c+1

f (f * a) mod n

return f

In disciplines like cryptography and primality testing, such methods' efficiency is

essential.

Based on our proposed approach, the modular exponentiation algorithm, expressed as ab

mod n, is computed using the following pseudo code.

Note: The integer b is expressed as a binary number bkbk1 ... b0

Algorithm 3.1 Pseudo code for Computing a
b
 mod n Using Modified Method

Due to its oscillations between the two operations, this technique uses the square-multiply

approach. Suppose we want to calculate c ≡ a
b
 mod n:

 Write the letter "b" in binary form.

 Starting from the left (MSB-Most Significant Bit): for each ‘1’ in ‘b’ square the

result then multiply by ‘a’ and for each ‘0’ square the result only.

 Calculate the modular of the result at each step.

33

Figure 3.3: Flowchart for Computing a
b
 mod n Using Modified Method

34

Example:

Table 3.1: Result of the Modified Modular Exponentiation Algorithm for a

b
 mod n,

where a = 240, b = 262(10) = 100000110(2), n = 14

i 8 7 6 5

4 3

2

1 0

bi

c

1

1

0

2

0

4

0

8

0

16

0

32

1

65

1

131

0

262

f 240 4 2 4 2 4 4 4 2

Therefore, the computed value of ab mod n = 240262 mod 14 using our modified modular

exponentiation approach is 2. The variable c is not needed; it is included for explanatory

purposes. The final value of c is the value of the exponent.

Modular exponentiation as an application is interesting due to its significance in

cryptography. This modified modular exponentiation method can also be applied to the

Diffie-Hellman Key exchange algorithm.

35

Chapter Four

Implementation, Performance Analysis, and Results

4.1. Overview

This Chapter details the purpose of modifications made to the standard RSA encryption

and decryption processes with the aid of experimental implementation and analysis. Here

the principle is clarified by using artificially small parameters. The method, however, is

generally applicable to all suitably chosen parameters.

4.2. Implementation

The practical implementation is performed using MATLABR2019a programming

platform installed on windows 10 pro that was running on Intel(R) Core (TM) i7-4610M

CPU @ 3.00GHz 8 GB RAM and 64-bit Operating System. The selection of this

programming platform is due to the fact that MATLAB toolboxes are professionally

developed, thoroughly examined, and well-documented. MATLAB comes with a huge

library of predefined functions that provides tested and prepackaged solutions to many

technical tasks. It provides a vast library of mathematical operations for numerical

integration, cryptography, statistics, linear algebra, and more [30].

Using a prime generation process based on the Miller-Rabin Method, the tests are

performed and analyzed by generating initial random primes for each of the cases. The test

is carried out for the various bit sizes of initial primes, which range from 28, 56, 128, 256,

and 512. For the help of performance evaluation and analysis, we have supplied the same

input values for both the standard and modified work in each experimental test. To

minimize the effect of random errors, we performed repeated measurements using the

same inputs until we get precise values and then we take their average. The prime

numbers are generated randomly using the Linux OpenSSL command. Figure 4.0 shows

an illustration to generate a random prime number having a 256-bit size.

36

Figure 4.0: Generating a random prime number having a 256-bit size

4.2.1. Standard RSA (SRSA) Implementation

Here the naive approach of modular multiplications was applied to perform the encryption

and decryption process of the RSA cryptosystem. Initially, the standard RSA algorithm

has been implemented using MATLAB2019a programming language. As an illustration of

this implementation, an experimental output having a total bit size of 512 is employed for

prime numbers p and q (256 bits for each) as shown in figure 4.1. The computational steps

were performed as follows:

Step 1: At the beginning, we run the Matlab program's Standard_RSR.m code. Here

Matlab 2019a-based simulation tool is used.

Step 2: Then, we entered two large prime numbers, p, and q, and calculated their product

n, which is the modulus for encryption and decryption.

Step 3: The calculated public and private RSA keys are displayed in figure 4.2 after

entering the values and pressing enter key.

Step 4: Figure 4.2 also shows that when asked to "Enter the message," we can enter any

text, in this case, we input the message "Hi" as an illustration.

Step 5: After entering the message, the program will display the ASCII code, Ciphertext

of the ASCII message, Decrypted ASCII message, and Decrypted Message as the entered

message.

37

Figure 4.1: Implementation of SRSA Algorithm for p and q values

Figure 4.2: ASCII code and Decrypted Message of SRSA

38

4.2.2. Modified RSA (MRSA) Implementation

Likewise, the proposed work was implemented using the same programming platform and

equal input size of data to that of the standard RSA cryptographic approach. However, in

this case, we have applied the square-multiply / fast modular exponentiation/ approach to

encrypt and decrypt the supplied message by converting the public exponent(e) and secret

exponent(d) into the binary number format. Figure 4.4 shows the experimental output of

the modified RSA cryptosystem which is tested using the same inputs as that of the

standard RSA.

Figure 4.3: Implementation of MRSA Algorithm for p and q values

39

Figure 4.4: ASCII code and Decrypted Message of MRSA

40

4.3. Performance Analysis and Results

Our suggested RSA algorithm was compared to the standard RSA in terms of performance

analysis metrics like Key Encryption and Decryption Time, Throughput, Memory

Utilization, and Avalanche Effect. Before using any algorithm or technique for a real-

world application, these performance parameters have to be considered.

4.3.1. Encryption Time

Encryption time is the amount of time needed to transform plaintext into ciphertext. The

length of the key used, the type of mode employed, and the size of the plain text blocks

are all factors that affect how quickly data is encrypted. The proposed work uses seconds

as the measurement unit. The algorithm's performance is shown by the encryption time,

which also indicates how quickly the system will react to inputs. Figure 4.5 shows the

comparison of encryption time in seconds among the Standard RSA (SRSA) and Modified

RSA (MRSA) algorithms. The result shows that the Modified RSA algorithm takes less

amount of encryption time than the Standard one. From Table 4.2, it is found that the

MRSA algorithm has improved the encryption performance of SRSA by 17.46442 %.

Table 4.0: Summary of Encryption Time for the Standard and Modified RSA Algorithm

Bit Size

Time (Seconds)

28 Bit 56 Bit 128 Bit 256 Bit 512 Bit

SRSA 1.034064 1.036526 1.072717 1.144744 1.205565

MRSA

1.008957

1.008999

1.010322

1.011292

1.019878

41

Figure 4.5: Analysis of Encryption Performance (in seconds)

4.3.2. Decryption Time

Decryption time is the amount of time it takes an algorithm to decipher a given cipher text

and return the original plaintext. The performance of the system is also affected by the

reverse encryption procedure. The algorithm determines the numerous useful applications

in the real world based on the decryption time. Figure 4.6 shows the comparison of

decryption time in seconds among the Standard RSA (SRSA) and Modified RSA (MRSA)

algorithms. Likewise, the encryption time, this result also shows that the Modified RSA

algorithm takes less amount of encryption time than the Standard RSA algorithm.

According to Table 4.3, the MRSA algorithm has an 18.70409 % improvement over the

SRSA algorithm in terms of decryption performance.

Table 4.1: Summary of Decryption Time for the Standard and Modified RSA Algorithm

Bit Size 28 Bit

Time (Seconds)

56 Bit 128 Bit 256 Bit 512 Bit

SRSA 1.036230 1.037971 1.072871 1.173844 1.22741

MRSA 1.008957 1.009952 1.010431 1.011325 1.059358

42

We have constructed the comparison in Table 4.2 and Table 4.3 based on the encryption

and decryption time of the Standard and Modified RSA algorithms in Tables 4.0 and

Table 4.1.

Table 4.2: Comparison of the encryption time of SRA and MRSA algorithms (%)

Key Length (bits) MRSA SRSA Time Difference

28 1.008957 sec 1.034064 sec 5.834393 %

56 1.008999 sec 1.036526 sec 6.308298 %

128 1.010322 sec 1.072717 sec 13.08824 %

256 1.011292 sec 1.144744 sec 26.1322 %

512 1.019878 sec 1.205565 sec 35.95899 %

Average

1.01189 sec

1.098723 sec

17.46442 %

Table 4.3: Comparison of the decryption time of SRA and MRSA algorithms (%)

Key Length (bits) MRSA SRSA Time Difference

28 1.008957 sec 1.036230 sec 6.254945 %

56 1.009952 sec 1.037971 sec 6.496501 %

128 1.010431 sec 1.072871 sec 13.107 %

256 1.011325 sec 1.173844 sec 31.22943 %

512 1.059358 sec 1.22741 sec 36.43259 %

Average

1.020005 sec

1.109665 sec

18.70409 %

43

Figure 4.6: Analysis of Decryption Performance (in seconds)

4.3.3. Memory Utilization

The quantity of memory required for the encryption or decryption process is referred to as the

memory consumed, and it primarily depends on the internal structure of the algorithm. Based on

memory use, this metric is crucial in determining whether the method is space-efficient. Figure

4.7 and Figure 4.8 shows a sample experimental output for a 1280-byte message encrypted using

512 key lengths. According to Table 4.5, it is observed that the memory consumption of the

MRSA algorithm is slightly higher by 1.05849 % than the SRSA. As seen in Figure 4.9, the

Modified RSA algorithm uses more memory than the Standard RSA algorithm because to

implement the modified system, we have utilized an array list which consumes more space. As a

result, it's not recommended to utilize the Modified RSA algorithm for memory-constrained-

based systems.

Figure 4.7: Snapshot showing Memory consumed by the MRSA

44

Figure 4.8: Snapshot showing Memory consumed by the SRSA

Table 4.4: Summary of Memory Usage for the Standard and Modified RSA Algorithm

Input Size

(Bytes)

Algorithms

Evaluation

Process

Memory

Usage(MB)

Key Length

(bits)

 SRSA 1329.3

1280 Encryption & 56

 MRSA Decryption 1353.6

SRSA

Encryption &

1355.9

1280 Decryption 64

 MRSA 1373.7

SRSA

Encryption &

1393.2

1280 Decryption
128

 MRSA 1413.2

SRSA

Encryption &

1435.8

1280
MRSA

Decryption 256

1442.0

SRSA

Encryption &

1442.3

1280
Decryption

MRSA 1446.4

512

45

Figure 4.9: Analysis of Memory Usage (MB)

Table 4.5: Comparison of the memory consumption of SRA and MRSA algorithms (%)

Input Size

(Bytes)

Key Length

(bits)

MRSA SRSA Memory Consumption

Difference (%)

 56 1353.6 MB 1329.3 MB -1.82803 %

64 1373.7 MB 1355.9 MB -1.31278 %

1280 128 1413.2 MB 1393.2 MB -1.43554 %

 256 1442.0 MB 1435.8 MB -0.43182 %

 512 1446.4 MB 1442.3 MB -0.28427 %

 Average 1405.78 MB 1391.3 MB -1.05849 %

4.3.4. Avalanche Effect

The avalanche effect is one of the key features of cryptography. It occurs when an input

data set is minimally modified by changing one or more bits, dramatically altering the

output. The avalanche effect suggests that a slight change in the plaintext (or key) should

result in a significant change to the cipher text.

46

The purpose of the avalanche effect is to make it more difficult to do cipher text analysis

while trying to come up with an attack because even a small change might result in a

significant change. It aids in evaluating an algorithm's level of security.

Avalanche Effect = Number of Flipped Bits in Cipher text *100% (1)

Number of Bits in Cipher text

To perform the test, we change some plaintext characters. Table 4.6 and Table 4.7 show

the analysis of the Avalanche Effect due to some character changes in plaintext from

different positions when the key is constant (512-bit).

If we flip in some characters (bits) in the plaintext, for example, from the word

"CRYPTOGRAPHY", we get different cipher text outputs as shown in Table 4.6 and

Table 4.7. From the result, we can see that the cipher text is very strong for very simple

plaintext character changes in both algorithms.

Figure 4.8 shows the avalanche effect of SRSA and MRSA. Although more than half of

the bits in the cipher text are changed in both algorithms, the MRSA exhibits a 14.53511%

higher avalanche value than the SRSA. Therefore, we can deduce that the Modified RSA

algorithm exhibits a relatively higher avalanche effect than the Standard RSA algorithms

which depicts the secureness of the algorithm.

47

Table 4.6: Avalanche Test of the SRSA

Plaintext

Ciphertext

of

changed

characters

of flipped bits

in ciphertext

Avalanche

Effect (%)

CRYPTOGRAPHY

0100001101010010010110010

1010000010101000100111101

0001110101001001000001010

100000100100001011001

&Zà

00011110001001100001100

10001001101011010111000

000001111000001000

1

33

33/64*100%=

51.56%

CrYPTOGRAPHY

0100001101110010010110010

1010000010101000100111101

0001110101001001000001010

1000001001000010110010010

0000

]UÅg|

00111010100101011101110

10001110011101000100110

1101110111011001111100

CRyPTOGrAPHY

0100001101010010011110010

1010000010101000100111101

0001110111001001000001010

1000001001000010110010010

0000

]¼éj¦|

01011101101111001001010

01110100101101010000011

101010011001111100

2

34

34/64*100%=

53.13%

CRyPToGrAPHY

0100001101010010011110010

1010000010101000110111101

0001110111001001000001010

1000001001000010110010010

0000

:Ýèwg

00111010100101011101110

10001110011101000100110

1101110111011001111100

3

36

36/68*100=54

.94%

CRyPToGrAPHy

0100001101010010011110010

1010000010101000110111101

00011101110010

0100000101010000010010000

1111001

u+º9Ñ6îÓ

01110101001010111011101

00011100111010001001101

101110111011010011100

4

38
38/68*100%=

55.88%

48

Table 4.7: Avalanche Test of the MRSA

Plaintext

Ciphertext

of

changed

characters

of flipped bits

in ciphertext

Avalanche

Effect (%)

CRYPTOGRAPHY &Zà

0001111000100110000110010

0010011010110101110000000

01111000001000

00011110001001100001100
10001001101011010111000
000001111000001000

CrYPTOGRAPHY 5ÕÄÑ¥ñà

0100001101110010010110010 00110101110101011100010 37 37/61=60.66%

1010000010101000100111101 01101000110100101111100

0001110101001001000001010 01111000001000
1

1000001001000010110010010

0000

CRyPTOGrAPHY áöeõºnèô 54/81=66.67%

0100001101010010011110010 10001110111000011111011

1010000010101000100111101

0001110111001001000001010

00110010111110101101110

10100000110110111011101
00011110100

2

54

1000001001000010110010010

0000

CRyPToGrAPHY áöeæDdxØô

0100001101010010011110010 10001110111000011111011

1010000010101000110111101

0001110111001001000001010

00110010111100110010001

00011001000111100011011

00011110100

3

51

51/80=63.75%

1000001001000010110010010

0000

CRyPToGrAPHy áöeæDdxÙ 4 50/81=61.73%

0100001101010010011110010
10001110111000011111011
00110010111100110010001

 50

1010000010101000110111101 00011001000111100011011

00011101110010
00100010100

0100000101010000010010000

1111001

49

Table 4.8: Comparison of the avalanche effect of SRA and MRSA algorithms (%)

of changed

characters

SRSA MRSA Avalanche Value

Difference (%)

1 51.56 % 60.66 % 15.00165 %

2 53.13 % 66.67 % 20.30898 %

3 54.94 % 63.75 % 13.81961 %

4 55.88 % 61.73 % 9.476754 %

Average

53.8775 %

63.2025 %

14.53511%%

Figure 4.10: Analysis of Avalanche Effect (%)

50

Plaintext Size

(Byte)

Algorithms

386 788 1340 2110 3070

Encryption Time (Seconds)

4.3.5. Throughput

Throughput is the measure of an algorithm's capacity to process data in a given amount of

time. The higher the throughput, the more efficient the algorithm is, and the less battery

power it uses because throughput and battery usage are inversely correlated. Figure 4.9

and Figure 4.10 show the comparison of encryption throughput and decryption throughput

in Byte per second (Bps) respectively among the Standard RSA (SRSA) and Modified

RSA (MRSA) algorithms. According to Table 4.13 and Table 4.14, the MRSA algorithm

has 15.80883 % and 15.12928 % performance improvements over the SRSA algorithm in

terms of encryption and decryption throughput respectively.

Encryption Throughput = Plain Text (2)

Encryption Time

Decryption Throughput = Plain Text (3)

Decryption Time

Table 4.9: Summary of Encryption Time for the Standard and Modified RSA Algorithm Using

Different Message Sizes

SRSA 1.231376 1.25715 1.272265 1.310744 1.374953

MRSA 1.019957 1.050202 1.079777 1.117768 1.161019

51

Plaintext Size

(Byte)

Algorithms

386 788 1340 2110 3070

Decryption Time (Seconds)

Table 4.10: Summary of Encryption Throughput for the Standard and Modified RSA Algorithm

SRSA 313.47 626.81 1053.24 1609.77 2232.80

MRSA 378.45 750.33 1241.00 1887.69 2644.23

(Byte/second)

Figure 4.11: Analysis of Encryption Throughput (BPs)

Table 4.11: Summary of Decryption Time for the Standard and Modified RSA Algorithm Using

Different Message Sizes

Algorithms Encryption Throughput (Bps)

SRSA 1.234020 1.236230 1.278710 1.331844 1.39741

MRSA

1.028957

1.05952

1.090431

1.1301325

1.18935

52

Table 4.12: Summary of Decryption Throughput for the Standard and Modified RSA Algorithm

(Byte/second)

T)

Plaintext Size (Byte) SRSA MRSA Throughput Difference (%)

386 313.47 Bps 378.45 Bps 17.17004 %

788 626.81 Bps 750.33 Bps 16.46209 %

1340 1053.24 Bps 1241.00 Bps 15.12973 %

2110 1609.77 Bps 1887.69 Bps 14.72276 %

3070 2232.80 Bps 2644.23 Bps 15.55954 %

Average

1167.218 Bps

1380.34 Bps

15.80883 %

Table 4.14: Comparison of the decryption throughput of SRA and MRSA algorithms (%)

Plaintext Size (Byte) SRSA MRSA Throughput Difference (%)

386 312.89 Bps 375.14 Bps 16.5938 %

788 637.42 Bps 743.73 Bps 14.29417 %

1340 1047.93 Bps 1228.87 Bps 14.7241 %

2110 1584.27 Bps 1867.04 Bps 15.14536 %

3070 2196.92 Bps 2581.24 Bps 14.88897 %

Average 1155.886 Bps 1359.204 Bps

15.12928 %

Algorithms Decryption Throughput (Bps)

SRSA 312.89 637.42 1047.93 1584.27 2196.92

MRSA 375.14 743.73 1228.87 1867.04 2581.24

able 4.13: Comparison of the encryption throughput of SRA and MRSA algorithms (%

53

Figure 4.12: Analysis of Decryption Throughput (BPs)

4.4. Discussions

In this chapter, we presented the experimental aspects associated with both the standard

and the improved model of the RSA cryptosystem. The main objective of this work was to

implement a modified modular exponentiation algorithm to speed up the RSA's execution

time. In this research work, different performance evaluation metrics such as encryption,

decryption time, memory utilization, avalanche effect, encryption, and decryption

throughput were employed to perform the investigation. While comparing the results

obtained using the baseline model and the improved model related to different

performance evaluation metrics, we found various experimental outcomes. The

experimental results show that the MRSA algorithm has a 17.46442 % and 18.70409%

improvement over the SRSA algorithm in terms of encryption and decryption time

performance. The MRSA also exhibits a 14.53511% higher avalanche value than the

SRSA which depicts its secureness. It also 15.80883 % and 15.12928 % performance

improvements over the SRSA algorithm in terms of encryption and decryption throughput

respectively. However, the memory consumption of the MRSA algorithm is slightly

higher by 1.05849 % than the SRSA because to implement it, an array list that consumes

more space is employed.

54

Chapter Five

Conclusion and Recommendations

5.1. Conclusion

In this thesis work an improvement of the RSA algorithm is presented. The

implementation of the proposed technique was performed using the MATLAB

programming platform. In the proposed algorithm, we have attempted to improve the

encryption and decryption time of the standard RSA algorithm. The new algorithm based

on modified RSA has been proposed and designed by applying the square-multiply

technique of modular exponentiation.

The proposed cryptosystem is implemented and its performance is evaluated using various

metrics in both encryption and decryption processes. The results obtained demonstrated

that the modified cryptosystem improves the existing modular exponentiation algorithms,

significantly reducing the encryption and decryption execution time. However, our

algorithm uses more memory than the Standard RSA algorithm that is because to

implement the modified system, we have utilized an array list which consumes more

space. The Modified RSA algorithm also exhibits a higher encryption and decryption

throughput when compared to the Standard RSA algorithm. The Modified RSA algorithm

also exhibits considerably higher avalanche values when compared to the Standard RSA

algorithm, which shows how secure the algorithm is.

5.2. Recommendations

Additional features, improvements, and modifications should be incorporated to come up

with an effective and efficient cryptographic algorithm. We recommend utilizing larger

key lengths of prime numbers p and q to support the large transfer of messages and better

security of the system. Furthermore, the proposed work is recommended for

communication domains where speed performance and throughput with better are vital

issues. However, when storage is a vital issue of the domain, the standard RSA

cryptosystem is the feasible choice.

55

5.3. Contributions

The followings are some of the contributions that can be made by this research work:

 The proposed RSA cryptosystem uses a simple mathematical technique of

computation that most individuals easily understand.

 A huge amount of data can be transferred between the CPU and the memory in a

considerable time.

 Better real-time system performance is achieved by the simultaneous processing of

data while the program is running.

5.4. Future Work

We encourage ourselves to concentrate on the implementation of the RSA cryptosystem,

which has a large key size, in the upcoming work, since it will dramatically increase

public-key cryptography's security. Furthermore, we want to extend our efforts on

improving the RSA algorithm's key generation time. Future research will also consider

digital signatures, such as Pretty Good Privacy (PGP), which are mathematical schemes

for representing the authenticity of messages. This will increase the security and

authenticity of the data. The scheme could also be extended to encrypt other multimedia

files such as image, audio, and video files.

56

References

[1] Stallings, W. (2006). Cryptography and network security principles and practices 4th

edition.

[2] Chen, F., Wang, J., Li, J., Xu, Y., Zhang, C., & Xiang, T. (2022). TrustBuilder: A

non-repudiation scheme for IoT cloud applications. Computers & Security, 116, 102664.

[3] Pournaghi, S.M., Bayat, M. & Farjami, Y. MedSBA: a novel and secure scheme to

share medical data based on blockchain technology and attribute-based encryption. J

Ambient Intell Human Comput 11, 4613–4641 (2020). https://doi.org/10.1007/s12652-

020-01710-y

[4] Dhakar, R. S., Gupta, A. K., & Sharma, P. (2012, January). Modified RSA

encryption algorithm (MREA). In 2012 second international conference on advanced

computing & communication technologies (pp. 426-429). IEEE.

[5] Castelvecchi, Davide (2020-10-30). "Quantum-computing pioneer warns of complacency

over Internet security". Nature. 587 (7833): 189. Bibcode:2020Natur.587..189C.

doi:10.1038/d41586-020-03068-9. PMID 33139910. S2CID 226243008.

[6] Somsuk, K., Chiawchanwattana, T., & Sanemueang, C. (2018, October). Speed up RSA’s

Decryption Process with Large sub Exponents using Improved CRT. In 2018 International

Conference on Information Technology (InCIT) (pp. 1-5). IEEE.

[7] Castelvecchi, Davide (2020-10-30). "Quantum-computing pioneer warns of complacency

over Internet security". Nature. 587 (7833): 189. Bibcode:2020Natur. 587..189C.

doi:10.1038/d41586-020-03068-9. PMID 33139910. S2CID 226243008

[8] Acosta, A. J., Addabbo, T., & Tena‐Sánchez, E. (2017). Embedded electronic circuits for

cryptography, hardware security and true random number generation: an

overview. International Journal of Circuit Theory and Applications, 45(2), 145-169.

[9] Yusfrizal, Y., Meizar, A., Kurniawan, H., & Agustin, F. (2018, August). Key management

using combination of Diffie–Hellman key exchange with AES encryption. In 2018 6th

International Conference on Cyber and IT Service Management (CITSM) (pp. 1-6). IEEE

[10] Kartit, Zaid (February 2016). "Applying Encryption Algorithms for Data Security in Cloud

Storage, Kartit, et al"

57

[11] Nwoye, Chinedu. (2015). Design and Development of an E-Commerce Security Using

RSA Cryptosystem. International Journal of Innovative Research in Information Security

(IJIRIS). Volume 6. 5-17].

[12] R. Imam, Q. M. Areeb, A. Alturki and F. Anwer, "Systematic and Critical Review of RSA

Based Public Key Cryptographic Schemes: Past and Present Status," in IEEE Access, vol. 9, pp.

155949-155976, 2021, doi: 10.1109/ACCESS.2021.3129224.

[13] Underwood, R.G. (2022). Public Key Cryptography. In: Cryptography for Secure

Encryption. Universitext. Springer, Cham. https://doi.org/10.1007/978-3-030-97902-7_9

[14] Kessler, G. C. (2015). An overview of cryptography.

[15] Johannes Landin (14:29, 27 October 2020).‖ Vectorized version of

File:Public_key_encryption_keys.png‖

[16] Barker, E. and Roginsky, A. (2019), Transitioning the Use of Cryptographic

Algorithms and Key Lengths, Special Publication (NIST SP), National Institute of

Standards and Technology, Gaithersburg, MD, [online],

https://doi.org/10.6028/NIST.SP.800-131Ar2 (Accessed February 28, 2023)

[17] Abid, R., Iwendi, C., Javed, A.R. et al. An optimised homomorphic CRT-RSA

algorithm for secure and efficient communication. Pers Ubiquit Comput (2021).

[18] Chia, Jason; Chin, Ji-Jian; Yip, Sook-Chin (2021-09-16). "Digital signature schemes

with strong existential unforgeability". F1000Research. 10: 931.

doi:10.12688/f1000research.72910.1. S2CID 239387758

[19] Jahan, I., Asif, M., & Rozario, L. J. (2015). Improved RSA cryptosystem based on

the study of number theory and public key cryptosystems. American Journal of

Engineering Research (AJER), 4(1), 143-149.

[20] Sahu, S., Singh, J., & Ashraf, J. (2015). Encryption & Decryption of Text Data with

RSA cryptography using MATLAB. International Journal of Science & Engg, 3, 104-110.

[21] E.F. Brickell, ―Survey of Hardware Implementations of RSA,‖ Advances in

Cryptology—CRYPTO ’89 Proceedings, Springer–Verlag, 1990, pp. 368–370.

[22] S. Vollala, V. V. Varadhan, K. Geetha and N. Ramasubramanian, "Efficient

modular multiplication algorithms for public key cryptography," 2014 IEEE

International Advance Computing Conference (IACC), 2014, pp. 74-78, doi:

https://doi.org/10.1007/978-3-030-97902-7_9

58

10.1109/IAdCC.2014.6779297.

[23] F. H. M. S. Al-Kadei, H. A. Mardan and N. A. Minas, "Speed Up Image Encryption by

Using RSA Algorithm," 2020 6th International Conference on Advanced Computing and

Communication Systems (ICACCS), Coimbatore, India, 2020, pp. 1302-1307, doi:

10.1109/ICACCS48705.2020.9074430.

[24] S. Vollala, B. S. Begum, A. D. Joshi and N. Ramasubramanian, "High-radix Modular

Exponentiation for hardware implementation of Public-Key Cryptography," 2016 International

Conference on Computing, Analytics and Security Trends (CAST), Pune, India, 2016, pp. 346-

350, doi: 10.1109/CAST.2016.7914992.

[25] Abouelkheir, E., & El-Sherbiny, S. (2022). Enhancement of Speech Encryption/Decryption

Process Using RSA Algorithm Variants. Human-centric Computing and Information

Sciences, 12.

[26] Mubasir, I., Abdul-Barik, A., & Salamudeen, A. (2021). Fast Implementation of the

Rivest-Shamir-Adleman (RSA) Algorithm with Robust Packet Data Loss Detection

Function. Asian Journal of Engineering and Applied Technology, 10(2), 19-24.

[27] Venkatesh, K., Pratibha, K., Annadurai, S., & Kuppusamy, L. (2019, October).

Reconfigurable architecture to speed-up modular exponentiation. In 2019 International

Carnahan Conference on Security Technology (ICCST) (pp. 1-6). IEEE.

[28] M.R. Gauthama Raman, Dr. S. Kaja Mohideen, 2014, Modified Modular

Exponentiation for a Faster Implementation of RSA algorithm on FPGA,

INTERNATIONAL JOURNAL OF ENGINEERING RESEARCH & TECHNOLOGY

(IJERT) NCICCT – 2014 (Volume 2 – Issue 05).

[29] S. Sharma, J.S. Yadav, P. Sharma. Modified RSA Public Key Cryptosystem Using

Short Range Natural Number Algorithm. International Journal of Advanced Research in

Computer Science and Software Engineering, volume 2, Issue 8, August 2012.

[30] L. Yu, "Matlab Programming Environment Based on Web," 2018 IEEE 4th Information

Technology and Mechatronics Engineering Conference (ITOEC), Chongqing, China, 2018, pp.

509-512, doi: 10.1109/ITOEC.2018.8740716

a

clc;

disp('Implementation of the Standard RSA Algorithm');

close all;

p = input('\nPlease Enter a Large Prime Number for p: ');

q = input('\nPlease Enter a Large Prime Number for q: ');

[Pk,Phi,d,e] = intialize(p,q);

disp('The Value of p: ');

disp(p);

disp('The Value of q: ');

disp(q);

M = input('\nEnter the message: ','s');

x=length(M);

c=0;

for j= 1:x

for i=0:122

if strcmp(M(j),char(i))

c(j)=i;

end

end

end

disp('ASCII Code of the Entered Message:');

disp(c);

% % %Encryption

for j= 1:x

cipher(j)= crypt(c(j),n,e);

end

disp('Encrypted /Ciphertext/ of the Entered Message:');

disp(cipher);

% % %Decryption

for j= 1:x

message(j)= crypt(cipher(j),Pk,d);

end

tic

disp(['Decrypted /Plaintext/ of the Message: ' c]);

user = memory;

disp('Memory Consumption By the Standard RSA Algorithm:');

disp(' ');

disp('Memory consumed by the MATLAB process in bytes:');

disp(user.MemUsedMATLAB)

pause(1)

toc

Appendices

Appendix A- MATLAB Sample Code for the Standard RSA Algorithm

b

function mc = crypt(M,N,e)

k = 65535;

c = M;

cf = 1;

cf=mod(c*cf,N);

for i=k-1:-1:1

c = mod(c*c,N);

j=k-i+1;

end

mc=cf;

end

c

Appendix B- MATLAB Sample Code for the Modified RSA Algorithm

% RSA = Ron Rivest, Adi Shamir, and Leonard Adleman

%% %% MATLAB Code By:

Debebe Kebede(BSc.) &

Yilekal Mulualem(PhD.)

clc;

status=0;

%% Implementation of the Modified RSA Algorithm

disp('Implementation of the Modified RSA Algorithm');

[Pk,Phi,d,e] = intialize(p,q);

%% Necessary Inputs:

while status == 0

disp(' ');

disp('Please Enter a Large Prime Number for p,');

p = input('Enter the value of p: ');

status = isprime(p);

end

status=0;

while status == 0

disp(' ');

disp('Please Enter a Large Prime Number for q,');

q = input('Enter the value of q: ');

status = isprime(q);

end

%% Calculation of Public and Private Keys

[n,Phi,d,e] = rsa(p,q);

disp('The Value of p: ');

disp(p);

disp('The Value of q: ');

disp(q);

M = input('\nEnter the message: ','s');

x=length(M); %Size of Entered Message

for j= 1:x

cipher(j)= crypt(c(j),n,e);

end

disp('Encrypted /Ciphertext/ of the Entered Message:');

disp(cipher);

d

disp('Decrypted ASCII of Message:');

disp(c);

disp(['Decrypted /Plaintext/ of the Message: ' c]);

user = memory;

disp('Memory Consumption By the Modified RSA Algorithm:');

disp(' ');

disp('Memory consumed by the MATLAB process in bytes:');

disp(user.MemUsedMATLAB)

status=0;

seperater=";";

for j= 1:x

if(j==x)

temp=num2str(cipher(j));

txstring = strcat(txstring,temp);

else

if(j==1)

txstring=num2str(cipher(j));

txstring = strcat(txstring,seperater);

else

temp=strcat(num2str(cipher(j)),seperater);

txstring = strcat(txstring,temp);

end

end

end

%% function to check that input numbers p and q are prime numbers

function result = isprime(number)

result=true;

% check if number is a nonnegative integer

if floor(number)~=number || number<0

result=false;

return

end

end

e

%% Function to Calculate and Assign Values using p and q

% Calculates Phi, n, d (used for decryption/ private key), e (used for

encryption/ public key)

function [n,Phi,d,e] = rsa(p,q)

clc;

disp('Intaializing:');

n=p*q;

Phi=(p-1)*(q-1);

%Calculate the value of e

x=2;e=1;

while x > 1

e=e+1;

x=gcd(Phi,e);

end

%Calculate the value of d

i=1;

r=1;

while r > 0

k=(Phi*i)+1;

r=rem(k,e);

i=i+1;

end

d=k/e;

clc;

disp(['The value of (N) is: ' num2str(n)]);

disp(['The public key (e) is: ' num2str(e)]);

disp(['The value of (Phi) is: ' num2str(Phi)]);

disp(['The private key (d) is: ' num2str(d)]);

end

%% Function to perform cryptography operations - Encryption and Decryption

using Keys

% Public for Encryption, Private for Decryption

function mc = crypt(M,N,e)

e=decimaltobinary(e);

k = 65535;

c = M;

cf = 1;

cf=mod(c*cf,N);

for i=k-1:-1:1

c = mod(c*c,N);

j=k-i+1;

if e(j)==1

cf=mod(c*cf,N);

end

end

mc=cf;

end

f

%% Function to convert Decimal into Binary to Carry out Encryption

Decryption mathematical operations

function a = decimaltobinary(d)

i=1;

a=zeros(1,65535);

while d >= 2

r=rem(d,2);

if r==1

a(i)=1;

else

a(i)=0;

end

end

i=i+1;

d=floor(d/2);

if d == 2

a(i) = 0;

else

a(i) = 1;

end

x=[a(16) a(15) a(14) a(13) a(12) a(11) a(10) a(9) a(8) a(7) a(6) a(5) a(4)

a(3) a(2) a(1)];

end

g

DEBRE BERHAN UNIVERSITY

COLLEGE OF COMPUTING

DEPARTMENT OF INFORMATION TECHNOLOGY

MASTERS OF COMPUTER NETWORK AND SECURITY

Signed Declaration

Sheet

I, the undersigned, declare that this thesis is my original work and has not been

presented for a degree in any other university, and that all source of materials

used for the thesis havebeen duly acknowledged.

Declared by:

Name: Signature: Date:

Confirmed by advisor:

Name:Yelkal Mulualem (PhD)

Signature: Date: 23/06/2015 E.C

